The active flux by zonal migrants: Top-down control and the biological pump

Hernández-León, S., E. Fraile-Nuez, J. Gasol, S. Agustí, X. Irigoien, C. Duarte, et al.

Neuer et al. (2007)

Equatorial Pacific

Export flux of carbon from 234Th measurements

Table	1.	Total	production,	new	production	and	export	flux	as	sinking
			POC (1	mmo	$1 \mathrm{C}\mathrm{m}^{-2}\mathrm{day}$	y-1)	•			

	TS-I	TS-II	
Total	90±10	129±18	
New	15 ± 7	22 ± 10	
Sinking flux	1.9 ± 0.6	2.4 ± 0.9	
Sinking flux/ New	(13±7)%	(11±6)%	

*Estimated uncertainties are twice the standard error of the mean based on replicate determinations. For sinking flux, each of the results computed from one of the individual profiles (Fig. 13) was taken as an independent determination. The greater variability during TS-II is due to the passage of a tropical instability wave.

Equatorial Pacific

Murray et al. (1996)

Active Flux

Bordes et al. (2010)

Location	Time of year	Migrant biomass (mg C·m⁻²)	Respiratory flux (mg C·m ⁻² ·d ⁻¹)	Gut flux (mg C·m ⁻² ·d ⁻	% of POC flux	References
Oligotrophic area					1.0-	
HOT		30.2 - 33.8	1.3-1.7	-	1ª	Roman et al., 2002
Equator divergence		2.8 - 21.8	0.9-1.2		(<1-2 ^ª)	Roman et al. (2002)
BATS	March/April	192 (84-540)	14.5 (6.2-40.8)	-	34 (18-70) ^a	Dam et al. (1995)
BATS	year-round	50 (0-123)	2.0 (0-9.9)	-	8 (0-39) ^b	Steinberg et al. (2000)
BATS	year-round	83 (0.7-468)	-	0.8 (0.007-4.5)	$4(0.03-21)^{c}$	Schnetzer and Steinberg (2002)
Western Equator	October	46.9	3	-	6	Le Borgne and Rodier (1997)
North (Oceanic)	Oct-Nov	30 ± 10	2.2 ± 0.3	<u> </u>	-	Isla and Anadón (2004)
Eastern Equator	March - April	96 ± 25.2	4.2 ± 1.2	-	18 ^ª	Zhang and Dam (1997)
Eastern Equator	October	154.8 ± 32.4	7.3 ± 1.4	-	25 ^a	Zhang and Dam (1997)
ALOHA	Year-round	162 (108-216)	3.6 (2.6 - 19.1)		15 (12-18) ^a	Al-Mutairi and Landry (2001)
ALOHA	June - July	157.9	3.7	-	18ª	Steinberg et al. (2008)
Eu- Meso-trophic area						
Central Equator (HNLC)	October	52.9	6	-	4 ^a	Le Borgne and Rodier (1997)
North (coastal)	Oct-Nov	360 ± 70	30.3 ± 1.9	-		Isla and Anadón (2004)
North (poleward current)	Oct-Nov	270 ± 210	10.4 ± 6.3	-	-	Isla and Anadón (2004)
Western Equator	October	46.9	3	-	6 ^a	Le Borgne and Rodier (1997)
Western Equator	February	367 (144 - 447)	22.7 (7.3-19.1)	4.8 (2.6-4.4)	24 (13-35) ^a	Hidaka et al. (2001)
Canary Current						
Canary Islands	March	204 (108 - 341)	0.8 (0.5-1.4)	0.1 (0.05-0.18) ^e	1.8 (1.1-2.7) ^d	Chapter 3.2
Canary Islands	June	580 - 1280	1.8 - 8.3	0.1 - 0-4 ^e	15-53 ^d	Yebra et al. (2005)
Canary Islands	August	247 - 125	4.2 - 1.9	0.3 - 2.4 ^e	20-45 ^d	Hernández-León et al. (2001a)
26°N	Sept-Oct	325 (106 - 486)	0.6(0.02 - 1.2)	$0.8(0.01 - 3.0)^{e}$	3.3 (0.1-9.0) ^f	Chapter 3.3
	May-June	314 (163.2 - 408)	2.3 (1.7 - 3.4)	$0.2(0.03 - 0.4)^{e}$	47.8 (26.9-64.4) ^f	Chapter 3.4
21°N	Sept-Oct	857 (368 - 1601)	6.5 (1.1 - 14.9)	22.7 (1.3-96.1) ^e	66.0 (0.1-149.5) ^f	Chapter 3.3
	May-June	314 (426.4 - 4480)	2.3 (2.7 - 48.6)	9.5 (0.05-28.0) ^e	(118.6 (29.1-273.7) *	Chapter 3.4

Table 4.1. Zooplankton active flux estimated in different oceanic regions.

^a %POC flux represents only respiratory flux. ^bActive flux includes DOC. ^cActive flux represents only gut flux. ^dRespiratory flux plus gut flux. ^eGut flux assessed with GF. ^fPotential ingestion assessed from respiration.

Putzeys (2013)

But,

Hidaka et al. (2001) showed that flux due to micronektonic organisms was 56-60% of total active flux.

MOHT net Oozeki et al. (2004)

2006

Hernández-León et al. (2010)

Hernández-León et al. (2010)

Values of active flux:

•	No-bloom	Мау	1999	1.9	mmolC-m ⁻² -d ⁻¹
•	No-bloom	January	2006	1.8-2.7	"
•	Bloom	February-March	2000	2.9	66
•	Bloom	March-May	2005	1.8-3.3	"
•	Bloom	February-March	2006	3.8-6.2	"
•	Bloom	February-March	2007	2.6-10.1	"

Values of passive flux:

•	Canary Cu	Neuer <i>et al.</i> (2007)	0.1-1.3	mmolC·m ⁻² ·d ⁻¹
•	Canary Cu	Alonso-G. <i>et al</i> . (2009)	5.8-9.7	"
•	Canary Cu	Alonso-G. <i>et al</i> . (2010)	0.1-2.0	"
•	Canary Cu	Hernández-León et al. (unpubl.)	0.5-2.2	"
•	Hawaii	Karl e <i>t al</i> . (2001)	2.3-6.0	"
•	Bermuda	Karl e <i>t al</i> . (2001)	2.4-6.0	"

- Geochemical estimates
- of new production:
- Gravitational flux:
- Active flux:
- DOC:

6.8-14.6 mmolC·m⁻²·d⁻¹ ~2-6 mmolC·m⁻²·d⁻¹ ~2-6 "

Bordes et al. (2010)

Arístegui et al. (2003)

Malaspina leg1 (day - night)

Malaspina leg5 (day - night)

Subtropical gyre

Equatoria upwelling

Stn 95 in the Equatorial Upwelling

Vinogradov (1953)

In summary,

- Mesozooplankton is shunt to the mesopelagic zone due to predation by DVMs
- Active flux seems similar to gravitational flux
- Clear gap in our knowledge of the biological pump
- The acoustic signal below the upwelling zone reached 4000 m depth
- Enhancement of the biological pump efficiency (true sequestration)
- Ladder of Migration

Gracias

Equatorial Pacific

Equatorial Atlantic

