
"A Real-Time Sailboat Controller Based
on ChibiOS"

J. Cabrera-Gámez, A. Ramos-de-Miguel, A. C. Domínguez-Brito, J.D.
Hernández-Sosa, J. Isern-González and L. Adler

Instituto Universitario SIANI (www.roc.siani.es),
Departamento de Informática y Sistemas (www.dis.ulpgc.es)

Universidad de Las Palmas de Gran Canaria (www.ulpgc.es), Spain

In: Morgan F., Tynan D. (eds) Robotic Sailing 2014. WRSC/IRSC 2014. Springer, Cham. DOI:
10.1007/978-3-319-10076-0_7

BibTEX:
@inproceedings{cabrera_gamez_2015_irsc_2014,
author="Cabrera-G{\’a}mez, Jorge
and de Miguel, Angel Ramos
and Dom{\’i}nguez-Brito, Antonio C.
and Hern{\’a}ndez-Sosa, Jose D.
and Isern-Gonz{\’a}lez, Jose
and Adler, Leonhard",
editor="Morgan, Fearghal
and Tynan, Dermot",
title="A Real-Time Sailboat Controller Based on ChibiOS",
booktitle="Robotic Sailing 2014",
year="2015",
publisher="Springer International Publishing",
address="Cham",
pages="77--85",
isbn="978-3-319-10076-0"
}

Copyright © 2015, Springer International Publishing AG (www.springer.com)

document created on: 31st March 2021
created from file: irsc_2014_camera_ready_first_page.tex
cover page automatically created with CoverPage.sty
(available at your favourite CTAN mirror)

www.roc.siani.es
www.dis.ulpgc.es
www.ulpgc.es
https://doi.org/10.1007/978-3-319-10076-0_7
www.springer.com


A Real-Time Sailboat Controller based on
ChibiOS ∗

J. Cabrera-Gámez1,2, A. Ramos de Miguel, A.C. Domı́nguez-Brito1,2, J.D.
Hernández-Sosa1,2, J. Isern-González2 and L. Adler1

1 Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en
Ingenieŕıa (IUSIANI). E-mail address: jcabrera@iusiani.ulpgc.es

2 Dept. Informática y Sistemas, Universidad de Las Palmas de Gran Canaria,
SPAIN.

1 Abstract

This paper presents an ongoing work aimed at the development of a multi-
threaded open source sailboat controller based on cheap Arduino-compatible
hardware and ChibiOS/RT, a small and agile real-time operating system.

The results achieved so far prove that this approach, that relies intensively
on the programming resources provided by the real-time multithreaded op-
erating system has produced a more stable, easy to modify and predictable
controller, all of them valuable characteristics in the context of a sailboat and
particularly in the case of competition environments..

2 Introduction

The Do-It-Yourself (DIY) movement organized around Arduino, Raspberry
PI and equivalent platforms has gained a lot of momentum along the last
years and it has become an influential movement catching the interest of
main microcontrollers vendors. A significant part of this success derives from
a smooth learning curve based on a simple programming environment, cheap
hardware, free source philosophy and a large and enthusiastic community of
users.

The successful utilization of Arduino boards or equivalent low power mi-
crocontrollers in the development of autonomous sailboats has been described
in a number of papers [11][9][10] and other autonomous sailboat projects avail-
able on the web. In fact, features like low price, low power, simple hardware

∗This work has been partially funded by Canary Government and FEDER funds
under ACIISI ProId2010/0062



2 J.Cabrera-Gámez et al.

interface, powerful microcontroller, PWM outputs, ... make them nearly per-
fect tools for developing a low level sailboat controller.

Our group have also explored this approach with good results [12]. How-
ever, based on our previous experience, we have identified the single-threaded
programming model as a main limitation of this approach. Consequently, in
this paper we will describe our efforts to develop an autonomous sailboat
controller within the programming framework provided by ChibiOS/RT [3],
a compact, agile and open source real time operating system, capable of run-
ning on a large set of microcontroller boards, including AVR and ARM based
Arduino boards. The underlying hypothesis is that the resulting system will
win in elegance, simplicity, robustness, performance and scalability.

The organization of the paper is as follows. First, we will make a brief
enumeration of the hardware components of the controller. Then, we will
introduce ChibiOS, its basic features and the main resources it provides for
multithreaded programming. The central section of the paper will describe the
design of the software architecture and the main components of the sailboat
controller. The final section will summarize the results achieved so far and it
will provide some hints about future lines of development.

3 The hardware

The hardware part of the controller is based on the Arduino DUE board.
This 110mm x 55mm board integrates an Atmel SAM3X8E ARM Cortex-
M3, a 32-bit 84 MHz ARM microcontroller featuring 96KB of RAM, 512KB
of Flash memory, 4 serial ports, CANBUS, SPI, 2 I2C (TWI) buses, an in-
chip real-time clock, watchdog and low power modes. Furthermore, the board
integrates other interesting modules, such as 12 analog inputs, 54 DIO (12
of them can be used as PWM outputs), 2 DACs and 6 timers. Interestingly,
the board includes also a USB OTG port and DMA controller. It operates at
3.3V and can provide 800mA through on board 3.3 and 5V regulators.

The rest of the elements that conforms the hardware of the controller
includes a 5Hz Telit JN3 GPS receiver, a XBee 868 Pro radio module, a
10 DOF IMU (3-axis magnetometer, 3-axis accelerometer, 3-axis gyro and
a barometer) and a solar power recharging board. For interfacing the XBee
radio module a XBee wireless Arduino shield containing a micro SD reader is
used.

The cost of the whole system (an Arduino Due, an Arduino XBee Wireless
shield, a XBee 868 Pro module, a Lipo Rider Pro, a Waspmote GPS board
and a DFRobot 10 DOF MEMS IMU) is approximately 185AC. It weighs less
than 80 grams, excluding batteries, and fits within a volume of 100 x 55 x 60
mm3.

This prototype also includes a legacy electronic compass board [1], which
includes a temperature sensor and pitch and roll inclinometers. This board



A Real-Time Sailboat Controller based on ChibiOS 3

has been conserved to compare its performance with the performance of the
low cost 10 DOF IMU.

This hardware is intended to replace a similar system that has been used
on board the ATIRMA sailboat, a carbon fiber One Meter class vessel with
mainsail and foresail (LOA3: 100 cm; beam: 24.5 cm; draft: 14 cm; sail area:
0.61 m2; displacement: 4.3 kg; mast height: 1.6m). A complete description
about the ATIRMA can be found in [12] and there are also some videos
available [6].

4 ChibiOS/RT

The programming model normally used with Arduino platforms follows a
single threaded iterative programming model based in an initial setup stage
followed by an iterative function. While this approach may be convenient for
solving simple tasks, it imposes serious limitations for programming real-time
controllers that must execute several control loops at different frequencies,
and programming a sailboat controller is a good example of this.

Programming a sailboat controller locates in that context, where the avail-
ability of a real-time multithreaded programming infrastructure constitutes a
definite advancement in this context. ChibiOS/RT [3] is a very compact, open
source real-time operating system (RTOS) for embedded microcontrollers that
supports an ample set of architectures (ARM, AVR, MSP430, ...) and plat-
forms. This RTOS offers a very compact preemptible kernel with a very fast
context switching capability. The API includes the set of primitives normally
found in other multithreaded programming environments, like threads man-
agement functions, virtual timers, semaphores, mutexes, condition variables,
messages, mailboxes, event flags or queues.

4.1 ChibiOS/RT scheduler

A main component of ChibiOS/RT is its scheduler, which implements a round
robin scheduling strategy combined with priority levels. A round robin rota-
tion may happen in any of these cases [4]:

• The thread in execution invokes chThdYield(). This permits the next
thread at the same priority level to execute.

• The thread in execution goes into a sleep state. When this thread is awaken
it is scheduled behind any other ready thread at the same priority level.

• The thread holding the CPU is preempted by a higher priority thread.
When this happens the thread is reinserted in the ready list behind any
other thread at the same priority level.

3Length Over All



4 J.Cabrera-Gámez et al.

• Only when the ChibiOS/RT configuration parameter CH TIME QUANTUM
is set to a value greater than zero, the thread in execution has exhausted
its time quantum and there is another thread ready for execution at the
same priority level, the executing thread is preempted and reinserted in
the ready list behind any thread at the same priority level.

In the default configuration, CH TIME QUANTUM parameter is set to
20ms. ChibiOS/RT recommends to set it to zero and design the application
to perform the so called ”cooperative scheduling”, i.e. make the threads go
to sleep or invoke chThdYield() voluntarily to schedule a new thread for ex-
ecution. This strategy makes the kernel faster and smaller, while it does not
prevent the utilization of multiple threads at the same priority level.

5 Software Architecture

The software architecture is made up of several threads running at different
frequencies, each one implementing a specific functionality or service, and it
is roughly organized into three levels attending the characteristic frequency
of operation of each thread.

• Low level threads that cope with the low level services, like attending the
reception of radio packets, logging data on the micro SD, reading sensors
or adjusting the rudder and sails, that demand high frequencies.

• Medium level threads. This set includes threads that execute with periods
in the range of 1 second, like the bearing selection component, or the fuzzy
controller in charge of sails and rudder.

• High level threads. There is only one thread at this level and is the thread
that monitors the execution of a specific activity along time.

The sensors onboard the sailboat produce data at different rates. For ex-
ample, the wind vane is read at a high frequency, typically 20Hz, and then
filtered using a median filter. The TCM2-50 inclinometers and compass pro-
duce data at a programmable rate, currently set at 8Hz. The GPS receiver
can provide NMEA messages at a maximum rate of 5Hz, even though it can
be programmed at 1Hz for low power operation.

Access to data registers is protected using specific mutexes. Data registers
are marked as volatile and only have one writer or producer, the thread that
updates it, and one or several readers or consumers. Producers systematically
timestamp the data, so that the consumer always knows the age of the datum.

The fuzzy control thread acts as a skipper in charge of monitoring the nav-
igation state of the sailboat in order to make it safe and respect the marked
course. Normally, it runs at a specific frequency, typically around 4Hz or lower
but it can be awaken by any of the data providers whenever a significant is
detected, e.g. excessive heeling or any out-of-range data event. This func-
tionality is implemented using a condition variable with timeout (denoted as



A Real-Time Sailboat Controller based on ChibiOS 5

Fig. 1: Main components of the software architecture.

”timer” in Fig.MainComps. The timeout is set to make this thread run with
the predetermined period, but the condition variable can be signaled by data
producers to accelerate the corrective action. The skipper implements a fuzzy
controller [8] using EFLL[2] to control the sails and the rudder.

The pilot is the thread in charge of selecting the optimal bearing given a
destination (waypoint coordinates) and wind conditions[7]. Normally, it exe-
cutes every 5 seconds when sailing in a stable course, but its execution can
be inhibited if the boat is turning, until she completes the maneuver. When
suspended at a timed condition variable, it can be signaled to execute imme-
diately whenever a new destination has been set.

The radio thread is one of the most important components of the sys-
tem, being in charge of the communications between the sailboat and the
base station. Its operation is driven by outgoing messages, that arrive at this
thread’s mailbox, and incoming messages. Incoming messages are used to set
the system into two possible control modes: remote and autonomous. In the
remote control (R/C) mode the rudder and sail servos are operated remotely
and the radio packets are directly translated into servo commands. The other
mode is the autonomous mode, in which the sailboat navigates under its own
control. The transition between these two modes is done upon the reception
of a specific radio packet. The radio thread cycles continuously between the
transmission of outgoing messages, received through the mailbox, and the pro-



6 J.Cabrera-Gámez et al.

Fig. 2: Printer and Logger components.

cessing of incoming messages. The reading of the mailbox is non-blocking and
it only yields the processor if there are not pending incoming packets. Under
the R/C mode, this thread has the highest priority to guarantee an efficient
radio communication service. But, even in this mode, packet dispatching is
done very fast and the system does not block because the thread performs
periodic yields of its processor quantum.

Additionally, mailboxes are used to interface some real-time components
to other non real-time subsystems. A clear example is the logger thread
Fig.PrinterLogger, responsible of saving messages delivered through the mail-
box into the micro SD card. Another example is the ”printer” service, used
for debugging by any thread that wants to print out coherent messages in
the serial monitor console. Any thread that wants to print any message may
deliver it at the printer mailbox. This service warranties that messages pro-
duced concurrently at different threads are not mangled at the console. This
thread is executed only during debugging.

In the current implementation all threads share the same priority level.
The only exception is the one managing the radio (see Fig.MainComps). This
particular thread promotes itself to a higher priority level whenever in R/C
mode. Typically, threads adjust their frequency of execution using a simple
scheme like this:

msg_t any_thread(void *param)

{

systime_t next_time = chTimeNow();



A Real-Time Sailboat Controller based on ChibiOS 7

while (TRUE)

{

// Compute the next deadline

next_time += MS2ST(period);

do_something();

chCondWaitTimeout (condVar, next_time);

}

}

6 Discussion and conclusions

This paper has described ongoing work for porting our former sailboat con-
troller [12], developed and tested on a 1281-ATMega (8MHz, 8Kb RAM,
128Kb Flash) processor, to a more powerful ARM-based Arduino DUE board
(84MHz, 96KB RAM, 512KB Flash). The availability of better computational
resources allows not only a substantial improvement in processing speed, but
also to use a real-time operating system. The ChibiOS real time operating sys-
tem has been selected to provide improved programming facilities that include
multithreading, virtual timers, mutual exclusion mechanisms and many other
features commonly found in other real-time programming contexts. Specifi-
cally, we use the port of ChibiOS/RT 2.6.0 available for the DUE board from
[5].

Within this new design it is quite simple to add or remove monitoring or
control threads, that must execute at specific frequencies, without the need
of interleaving them with the execution of other elements in a monolithic
system. Threads can be ranked by priorities in accordance to its criticality,
even though care must be taken to impede blocking the execution of lower
priority threads.Once developed, the resulting controller is now simpler, more
stable, robust, predictable and easier to modify than it was formerly.

The programming resources contributed by ChibiOS, specially the avail-
ability of mailboxes, have allowed the definition of services like the radio com-
munication, the logging system of the so called ”printer” services that can be
used by any of the components of the system.

At this stage of development the sailboat controller uses some standard
Arduino libraries that have been tuned to avoid the utilization of the delay()
function, substituted by equivalent chThdSleep() calls, or abusive utilization
of dynamic memory.

Next steps will be directed towards testing the performance of this con-
troller on board the ATIRMA. On a medium term, work is planned to address
a better exploitation of some unexplored ChibiOS/RT capabilities, like HAL
drivers, low power optimizations or some ARM processor features.



8 J.Cabrera-Gámez et al.

References

1. PNI’s legacy TCM2.5 electronic compass manual. http://www.pnicorp.com/

download/347/99/TCM2.52.6Manualr09.pdf

2. EFLL fuzzy logic library. https://github.com/zerokol/eFLL
3. ChibiOS/RT Home page. http://www.chibios.org/dokuwiki/doku.php?id=

start

4. ChibiOS tutorial on round robin scheduling. http://www.chibios.org/

dokuwiki/doku.php?id=chibios:kb:round_robin

5. RTOS Libraries available for Arduino. https://code.google.com/p/rtoslibs/
downloads/list

6. ATIRMA’s Blog. http://velerorobot.blogspot.com.es/
7. Stelzer, R., Pröll, T.: Autonomous sailboat navigation for short course racing.

Robotics and Autonomous Systems, 56, 604-614(2008).
8. Stelzer, R., Pröll, T., John, R.I.: Fuzzy Logic Control System for Autonomous

Sailboats. FUZZ-IEEE2007, pp 97–102(2007).
9. Alvira, M., Barton, T.: Small and Inexpensive Single-Board Computer for Au-

tonomous Sailboat Control, Robotic Sailing 2012, pp 105-116, Springer, 2013.
10. Koch, M., Petersen, W.: Using ARM7 and C/OS-II to Control an Autonomous

Sailboat Robotic Sailing 2011, pp 101-112, Springer 2012.
11. Bruget, K., Clement, B., Reynet, O., Weber, B.: An Arduino Compatible CAN

Bus Architecture for Sailing Applications, in Robotic Sailing 2013, Proceedings
of the 6th International Robotic Sailing Conference, F. Le Bars and L. Jaulin
(Eds), Springer, 2013.

12. Cabrera-Gámez, J., Ramos de Miguel,A., Domı́nguez-Brito, A.C., Hernández-
Sosa, J.D., Isern-González, J., Fernández-Perdomo, E.: An Embedded Low-Power
Control System for Autonomous Sailboats, in Robotic Sailing 2013, Proceedings
of the 6th International Robotic Sailing Conference, F. Le Bars and L. Jaulin
(Eds), Springer, 2013.


