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Una ciencia que ve la formación de la praxis,
a la cual sirve y es inherente, como algo que está más allá de ella,

y que se satisface con la separación del pensar y el actuar,
ya ha renunciado a la humanidad.

Horkheimer 1974, 270

Por democracia real entiendo la unión de lo que hay, de lo existente, y los conceptos que se usan para
legitimar lo existente. La relación entre ambos consiste en que el concepto está ya presente en lo que hay,

configura su orientación futura y sirve de canon crítico para la realización presente.
Cortina 1991, 223

Todo lo que pretendía reivindicar para sí la palabra democracia o lo que se aclamó como democracia real ha
desaparecido de la noche a la mañana. El vencedor es la democracia liberal, ya sólo queda la democracia

formal.
Sartori 1991, 459

El derecho en tanto que pretensión es ético; pero en tanto positividad, es político.
Aranguren 1991, 212

¿No tienes enemigos?,
¿Es que jamás dijiste la verdad o amaste la justicia?

Santiago Ramón y Cajal.

Libertad sin socialismo es privilegio e injusticia;
Socialismo sin libertad es esclavitud y brutalidad

Piotr Alekséyevich Kropotkin
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Chapter 1

Introduction

This chapter will be a brief description of the main pillars that will support the understanding and conceptualiza-
tion of the problem to be solved, i.e. the resolution of difficult fluorescent spectra of multi-fungicides mixtures
employing diverse neural ensembles. Theoretical foundations of the computational methods, fluorescence and
fungicides characteristics will be given.

1.1 Fungicides and Fluorescence

1.1.1 Fungicides

Fungi and oomycetes are the causative agents of many diseases, producing numerous losses in agricultural
production worldwide. These pathogens (phyto-, from the Greek, vegetable) have co-evolved with their hosts,
developing extremely efficient mechanisms to cause infections, grow, multiply and spread to all floors. Consid-
ering the ubiquitous nature and ability of fungi and oomycetes to cause epidemics in a relatively short period
of time, the infection control strategies are necessary in order to ensure the productivity of current agricultural
production. Chemical control measures is particularly common in the control of fungal infections where a lot
of these measures are due to the use of fungicides. Fungicides are a specific type of pesticide that helps con-
trol fungal infections, preventing the growth of or removing them. Represented as the group of pesticides with
greatest potential risk to humans, since about 90% of the fungicides currently or in the recent past have proven
carcinogenic effects in experimental animals [Loewy, 2000]. Furthermore, in the present state of knowledge,
plant protection products as fungicides are essential, and which form the basis of defending crops against pests,
and make profitable production of quality food. Thus, without the use of fungicides would result in a loss of pro-
duction between 20 and 30% averaged, often reached values of up to 75%. Consequently, the use of pesticides
is necessary for technical, economic and social reasons, in so that it can feed an exponentially growing society,
to the point that feeding problems in many developing countries would be eliminated by simply reducing crop
losses where they occur, improving production techniques and conservation of crops [Márquez, 2008]. It is es-
timated that more than 3500 organic pesticides are used, they can all be pollutants being washed away from the
fields to aquatic ecosystems, which are introduced into the food chain, killing various life forms necessary in the
balance of some ecosystems. The movement and dispersal in ecosystems of a pesticide causes environmental
pollution. Dispersion and fate will depend on the characteristics of the ecosystem and the pesticide, formulation
type, application method, environmental and agricultural conditions. In intensive agriculture, water is one of
the resources that are at high risk of pesticide contamination due to the dynamics that have these products on
the environment and the many factors involved (soil characteristics, climate, agricultural management practices
and forest, among others).

1.1.1.1 Benzimidazole fungicides

The class of fungicides that are to be analysed in the proposed system are Benzimidazol type, i.e., fungicides
whose main component is the Benzimidazol. Fungicides under study are benzimidazole derivatives, benomyl
(BM), carbendazim, (MBC), fuberidazole (FB) and thiabendazole (TBZ). These fungicides are the longest of
agrochemicals family, which have an imidazole ring containing both acidic nitrogen atom as core. Are often
used for prevention in the treatment of parasitic infections in agriculture and aquaculture as they are efficient at
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1. Introduction

low doses, in addition to inhibiting the development of a wide variety of fungi. Benzimidazoles founds some
applications such as pre or post product collection for the control of a large number of pathogens. Applied
directly to the soil or sprayed over crop fields [Wu et al., 2009]. Many of these components remain in the envi-
ronment after application, and some even do so for many years. This group includes analogues to thiabendazole
and benzimidazole carbamates components. The changes that have been made in the brief history of fungicides
have produced benzimidazoles with a lower rate of elimination, more power and a broader spectrum of activity.
Carbendazim (MBC), which is the most common stable metabolite of benomyl (BM) and thiophanate -methyl
(TPM), is considered more toxic fungal main precursor of benzimidazoles. Thus, the regulatory limits for these
fungicides are expressed in terms of the MBC, the only such measure for food safety or environmental impact
measurement of total benzimidazole found in a sample [Danaher et al., 2007]. Although there are numerous
benefits from the use of benzimidazole in the field of agriculture, the effects that can cause both the environment
and public health can not be neglected. Have been associated many toxic effects of chronic exposure to these
components, such as teratogenicity, birth defects, polyploidy, diarrhea, anemia, pulmonary edema, or necrotic
lymphadenopathy. Because of its use, both intense and extensive, the regulatory framework imposes higher
concentration limits, set in 0.01−10mg∗ kg−1, depending on the combination of fungicides (Plant Protection-
Pesticide Residues -Regulation (EC) No. 396, 2005). Particularly for many benzimidazoles, the tolerance to
a residue has been recently defined as a sum of precursors or metabolites relations elements instead of indi-
vidual components [Danaher et al., 2007]. The European water framework directive (Directive 2006/11/CE/4
) establishes a maximum concentration (MCL) of 0.1mg∗L−1 for many of the components that have the ben-
zimidazoles in natural waters and total concentration of all pesticides of 0.5mg∗L−1. It is necessary therefore
to determine low concentrations of these substances, increasing the complexity of the analytical methods with
high sensitivity, selectivity and resolution that must be applied to both samples of soil, sediment, water and
other types of samples environmental. The selection of an appropriate treatment protocol that allows to develop
a determination in a sample with multiple residues of benzimidazole components is currently a challenge due
to the properties of the chemical sample. The development of highly sensitive methods for this purpose is nec-
essary, and it is usually done before the test steps and appropriate instrumental techniques. Many efforts have
been invested in the past decades to develop and validate analytical methods for quantifying components of
benzimidazole and its metabolites in environmental samples at concentration levels below those established by
law and maximum concentration levels [Rodríguez et al., 2010].

Fungicides in the Canary Islands Certain fungicides used in this project, such as TBZ, are extensively used
in banana crops, the agricultural production base in the Canary Islands. After making cuts in the crown, the
area is sprayed with thiabendazole to prevent the growth of fungi that cause rot. For this reason, bananas are
impregnated with these toxins in the outer layers. In order to move this product to market, it is necessary to
submit the banana up to 3 washings to eliminate these and other components. Although chemical methods
pose toxicity reduction by photocatalysis, achieving effective results, it still requires the measurement of the
concentrations and the indentification of components through faster, effective and inexpensive methods. Thus,
the results of this project can be considered as a fast, cheap, effective and modern identification of TBZ in the
islands.

1.1.2 Fluorescence

Also called fluorometry or spectrofluorometry, is a type of electromagnetic spectroscopy that analyse the fluo-
rescence of a sample, i.e. the electromagnetic radiation to a stimulus in the same nature. When a chemical com-
pound absorbs ultraviolet or visible electromagnetic radiation passes to an excited electronic state. Many sub-
stances in that state dissipate excess energy as heat, through collisions with neighbouring atoms or molecules,
as in the absorption spectrophotometry. However, many compounds lost only part of this excess energy as heat,
and residual energy emitted in the form of electromagnetic radiation of different frequency than that absorbed,
and that can be used for analytical purposes, see Figure 1.1.

All fluorescent systems, such as the BFs, are generally characterized by an excitation (or absorption) spec-
tra and an emission spectra. These kind of spectra also allow their synchronous spectra to be acquired. Car-
bendazim 99.7% (methyl (1 H-benzimidazol-2-yl) carbamate), benomyl 99.3% (methyl 1-(butylcarbomayl)
benzimidazole-2-yl carbamate), thiabendazole 99.6% (2-(4-thiazol)benzimidazole) and fuberidazole 99.6% (2-
(2furanyl)-1 h-benzimidazole) were obtained from Riedel-de Haen (Seelze, Germany). All conventional and
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X+hv

Absorption
(spectrophotometry)

X*
X + heat

 + hv'

Emission
(Fotoluminiscence)

X + heat

Figure 1.1: Paths of energy relaxing after an electromagnetic excitation

synchronous fluorescence spectra in the study were acquired using a Perkin-Elmer LS-50 luminescence spec-
trophotometer (Beaconsfeld, Buckinghamshire, UK) fitted with a xenon discharge lamp.

Fluorescent spectroscopic techniques in mixture resolution has been proven as a versatile analytical tool
because of its selectivity [Suarez Araujo et al., 2010]. It main drawback lies in the spectral interferences of
the fluorescence systems present in a mixture. Thus, the resolution of complex mixtures with a high degree
of overlap among its compounds constitute a challenge in chemical analysis. Amongst the most commonly
instrumental techniques we found layer chromatography, gas chromatography, and high performance liquid
chromatography, that are used to tackle this difficult problem [Suarez Araujo et al., 2010, Vassilakis et al.,
1998,Sabik and Jeannot, 1998]. However complications such as cost, time, analytical complexity, and the need
for substance pre-treatment must also be considered if they are to be used. A search for alternative techniques
and methods would certainly be convenient when studying this problem. A complementary approach to the
instrumental and chemometric methods to obtain the resolution of multi-analyte systems could be based on
neural computation which has been biologically inspired. With this purpose in mind, the use of instrumental
methods are the only one which are capable of be combined with a computational solution and thus obtaining
its advantages. Following, we make a short comparison of chemical and instrumental methods, offering reasons
to consider preferable the instrumental techniques in conjunction with computational methods in the chemical
field over the traditional chemical methods.

1.1.2.1 Comparison of chemical and instrumental methods

We include the chemical and physical methods within the scope of the analytical method, but we understand
the classic chemical method with analysing chemical reactions, observation, measurement, determination of
chemical changes, while contemplating the instrumental as a method that performs measurements on physical
interactions, such as spectrometry. We can add instrumental methods that require very complex instruments
compared to traditional pipettes, burette, etc. of the chemical instrumentation and therefore more expensive, so
we have to analyse those compared methods in terms of precision, accuracy, sensitivity, speed, selectivity and
cost.

• Chemical methods are generally more accurate in absolute terms than the instrumental [González Pérez
and Hernández Hernández, 2002]

• Chemical methods are more accurate for high concentrations, increasing the errors of these meth-
ods as lower concentrations, conditions under which the methods are more accurate instrumental
[González Pérez and Hernández Hernández, 2002]

• Instrumental methods are more sensitive than chemical [González Pérez and Hernández Hernández,
2002]. This means that are capable of analyzing much smaller measures analyte chemical method be-
cause the useful range which are capable of measuring is wider

• Selectivity measures the ability of identifying elements. For this reason, this parameter depends on the
degree of interference or overlap between values of different analytes. The selectivity in instrumental
methods is extremely diverse, with some very selective, especially, some optical methods such as spec-
trofluorimetric [González Pérez and Hernández Hernández, 2002].
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1. Introduction

Figure 1.2: Tridimensional architecture of an Artificial Neural Network. Fuente: [García Báez, 2005]

• With regard to speed, instrumental methods are faster for serial determinations or routine. Require a long
setup, but then are usually faster [González Pérez and Hernández Hernández, 2002].

• While the apparatus necessary for the chemical method is much cheaper in terms of time and personnel
is much more expensive, not only for the training required to develop, but by the productivity that a
chemical could offer.

• Finally instrumental methods are more susceptible of being automated by computer, due to the nature of
the signals with which they work. Chemical methods suffer from this feature generally.

1.2 Neural computation

In much of the classical definitions of artificial intelligence underlies the idea of imitating human reasoning.
This being so, it seems logical that since the beginning of the information age arose the curiosity to under-
stand and try to imitate the functioning of our brain, but not just from the point of given applications which
perform similar to it, but even, to imitate physiological behaviour occurred in neuronal and non-neuronal sys-
tems. Logically, emulating such behaviour poses a clear way to get those functionalities we sought. The first
artificial neural network model (ANN) with universal computational capabilities was proposed by Warren Mc-
Culloch and Walter Pitts. A network of formal neurons, based on the knowledge of which is available on nerve
function [McCulloch and Pitts, 1943]. These studies were then followed by others that gave completeness and
improved the McCulloch-Pitts proposal. Among the most featured, were the researches and developments on
learning conducted by Donald Hebb [Hebb, 1949], Lashley [Lashley, 1950], McCulloch [McCulloch, 1959] and
Blum [Blum, 1962], to increase the computational power of networks of formal neurons with afferent interac-
tion. Lately, Rosenblatt [Rosenblatt, 1962] with the Perceptron entered in the analog level of artificial neural
networks. Since then, there have been many advances, that have allowed to turn the neural computation as a
key element, in the resolution of many problems in a wide domain of applications, and a suitable computational
paradigm for determining the style of computing in the brain, the algorithms used in it, and the implementation
thereof.

The neural computation can be understood as distributed computing and parallel, adaptive and selfpro-
grammable conducted through modular tridimensional architectures and organized in layers consisting of a
large number of processing elements with a high degree of connectivity, see Figure 1.3, and adaptive capability,
under different learning models [Suárez Araujo, 1996]. Its main information processing structure are artifi-
cial neural networks, where the adjective neural means that the inspiration are biological neural networks. The
ANNs studies and uses some strategies used by biological neurons for processing information. Neural com-
puting is one of the several models of computation that have been defined throughout history, considering the
ANNs as another approach to the problem of computing and is one of the five alternatives that were studied
between 30 and 40, in which clearly came out winning the Von Neumann architecture.
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1.2. Neural computation

1.2.1 Introduction to artificial neural networks

We can understand the artificial intelligence as a science of the artificial. This concept is the opposite or com-
plementary to the natural science model, which is guided by the experimental scientific method and aspires
to formalize the reality in order to obtain predictions of nature. The science of the artificial, understood as
opposed to experimental science, does not begin from a set of experiences as a method to generate a general
solution, but based on a functional specification aims at the synthesis of a system that satisfies the partial reality
defined. Artificial intelligence works with information and knowledge, abstracts elements independent of the
physical system that supports them. In the computer field, mainly two methodologies differ leading to this syn-
thesis. Symbolic computation and connectionist computing. In the symbolic-mathematical model, we defined
by logical-mathematical formalisms human behaviour with intent to imitate. In a connectionist model, we aims
to provide intelligent behaviour to a system by partial representation of bio-inspired structures in the brain,
which is composed of many relatively simple elements but strongly interconnected. Artificial neural networks
(hereinafter ANNs), born from this desire of imitating human brain structures. The ANNs can be defined as
massive networks, parallel and interconnected composed of simple elements (usually adaptive) and organiza-
tional hierarchically, trying to interact with real world objects in a manner analogous to as biological nervous
system does [Kohonen, 1988]. There is not an unique definition of ANN accepted by the entire scientific com-
munity, but exists a diversity consistent with the exact meaning of these information processing systems. They
have a great use that reveal its rich and varied character, from the pure mathematics to cognitive, through the
engineering.

1.2.2 Framework of ANN characterization

Following the Rumelhart criteria, the general framework of an ANN is determined by eight components that
are [Rumelhart et al., 1987]:

• A set of process units, containing, each of them, local memory.

• An activation state for every process unit.

• An Output function for each process unit.

• A connectivity patterns between process units, where each connection has an associated weight.

• A propagation rule for propagating patterns of activities through the network of connections. Also called
network function

• An activation rule for combining the inputs arriving to a unit with the current state of the unit to produce
a new level of activation. It is also called activation function.

• A learning rule, by which can change the connectivity patterns based on experience. It can be based in
the development of new synaptic connections, in the loss or modification of synaptic weights.

• An environment representation. A local information environment and a global information environment.

Following this framework we characterize the ANNs in the following three levels:

1. Topology connections (covers neural structure)

2. Neurodynamics

3. Learning

1.2.2.1 Connections topology

The connections topology is an essential part of the neural structure called an artificial neural network and indi-
cates the way in which the various elements of a network are interconnected [Hecht-Nielsen, 1990]. Formally,
a network structure is described by a directed graph in which the nodes are neurons or processing units and arcs
oriented communication channels between neurons. Each arc has an associated real value indicating the weight
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Figure 1.3: ANN with hierarchical structure. Source: own elaboration

of the connection. The communication scheme between different neurons can be of different forms: essentially
distinguishes between hierarchical and non-hierarchical scheme of connections.

The most relevant topology, the hierarchical one, see figure 1.3, the units are structured in layers, which
consist of sets of units with similar characteristics in terms of type of connection and type of processing they
perform. The lower level corresponds to the input neurons, the upper level to the output neurons. Between them,
are interspersed any number of hidden layers of cells, in principle, respecting each inner layer only receives
input signals from the preceding layer and output the signals only to the next layer. Notation cells is performed
in the inlet to the outlet and from top to bottom. The computer then takes place according to the bottom-up
scheme. By convention, the outputs of the layer number zero are the input signals of the network.

Typically, the structural organization of the processing elements that comprise an ANN is layered. We can
find plain ANNs neuronal structure, with a single layer of processing elements, also called monolayer ANNs
where all constituent units and wiring are similar in processing. ANNs also exist in varying degrees of depth,
this degree of depth is given by the number of layers that compose and are known as multilayer networks.

1.2.2.2 Neurodynamics

The neurodynamics of an ANN can come expressed as continuous functions over time or using discrete func-
tions. Generically these changes can be performed synchronously or asynchronous to all or part of the network
elements. Among the most common forms within asynchronous methods have the random, consisting of ran-
domly selected unit process that will compute its output. Another common way is by following the topological
order imposed by the connection, the computations are carried out synchronously layer by layer, from the next
to the inputs to the output.

1.2.2.3 Learning

We can define learning as the ability of a system to absorb information from the environment without the
need for a system to be programmed externally. The ANNs learning follows a model composed of two phases
[Judd, 1990]: loading mode (learning) and recovery mode (execution). Charging mode is where learning takes
itself, from the data received from the environment, the ANN is able to process and store the information
extracted from it in their synaptic connections. On the other hand, the recovery mode from issues raised from
the environment allows to get answers by using proper processing knowledge stored in ANN. The vast majority
of models distinguish ANNs clearly between these two phases, however in other models this distinction is not
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Figure 1.4: Data set distribution on supervised scheme

so clear, keeping these ANNs in a single continuous learning mode and execution. Processes learning are given
because ANN is stimulated by the environment, causing changes in the network to attempt to reach a new
way of efficiently responding to the task specified. Changes in the network may come given by changes in the
topology of connections andor changes in the synaptic weights. A first way could be to leave that responsibility
to the designer, who can set the necessary changes by proper formulation of the problem to resolve. Many
other times, the network is left in charge making the learning process itself from a training data set, which is
called learning from examples, in such cases, use learning algorithms that update iteratively such necessary
weights andor topological changes. sUnlike neurodynamics, learning algorithms allows performing non-local
processes.

The most common classification is based on how the learning process is guided, thus, three different
paradigms are distinguish [Haykin, 1994]:

Supervised learning for each input pattern to the network provides the correct answer to this pattern, provid-
ing guidance for the necessary adjustments to the synaptic weights. To obtain the generalization capability on
a supervised ANN it is necessary to divide the dataset into three different subgroups, see Figure 1.4. The first
one is called the train or learning set and it is used during the learning phase. A second one, called test set is
used as a first measure of generalization, helping to determine the stopping criteria of the learning process, in
order to avoid the overfitting problem, or the threshold value. The last one, called the validation set, is used to
give a final measure of generalization-accuracy of the ANN.

Reinforcement learning: from the response of the network from an input pattern, you have to return a scalar
evaluation of the response, indicating correctness of the response. Many authors consider this paradigm as part
of supervised learning, matching it to what would be a learning tutor.

Unsupervised learning: in this case the network does not receive any tutoring, having to organize their
outputs based on redundancy and structures that can be detected on the inputs. This paradigm is often called
self-organized learning.

All learning process, regardless of the type to which it belongs, according to the taxonomy made, entails a
way that the synaptic weights are modified or updated. This form is what we call learning rules (laws, algo-
rithms), which are mathematically expressed, depending on whether continuous or discrete, differential equa-
tions or difference equations based-systems. Considering the different types of rules we can talk about another
classification of learning processes, which distinguish four different types [Haykin, 1994] [Jain et al., 1996]:

Hebbian: as mentioned, it is the oldest type of learning, forming the basis of many subsequent learning laws.
It is within the category of learning by coincidence [Hecht-Nielsen, 1990]. This law, in the field of neural
computation comes from statements made by Donald Hebb in 1949 [Hebb, 1949], based on neurobiological
observations indicate that tend to reinforce synaptic connections to correlated firing neurons. They are based
on many unsupervised learning.
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Competitive: also have a high inspiration neurobiological since experiments have demonstrated their use in
the formation of topographical maps in brain and sensory nerve cell targeting striatum cortex. It is based on a
process of competition between units assigned exclusive representation, (trigger) to a group of input patterns.

Error correction: such rules, based on error correction, try to correct the error that occurs in the network, by
comparing the desired output with the actual output of the network, which are mainly applied in the monitored
paradigm. The way to fix the error is essentially based on gradient descent method, which consists in building a
global function error that is minimized by moving in the direction of maximum slope. The biological plausibility
is not as clear as in the previous cases, however practical results have been achieved very good at some examples
of this type of rules as the perceptron rule [Rosenblatt, 1962], delta rule [Widrow, 1962] or backpropagation
algorithm [Werbos, 1974].

Energy optimization: within them, the best known is the Boltzmann learning rule [Hinton and Sejnowski,
1986]. They are characterized by using an energy function, determined by individual states occupied by individ-
ual neurons, that is optimized. It is related to error correction in the sense that both are based on the minimization
of a function, but in this case the function is not defined in terms of network error. Specifically Boltzmann rule
is considered a derivative from stochastic learning information theory and thermodynamic principles.

Other features that have the ANNs are computational capacity, seen as the kind of problems that a network is
able to solve, and a computational complexity, which determines how fast or slow they can prove their learning
to reach a convergence in their results.

1.2.2.4 Features and Capabilities of ANNs:

The ANNs have a lot of architectural and functional properties that make them particularly suited to address
highly complex problems, based on behavior, etc. in real time. In this section we present an overview of all
those properties that characterize ANNs, not only by direct quoting that properties, but also inferring them by
analyzing characteristics that describe the types of problems that ANNs naturally and successfully addressed.
So we began by presenting a set of relevant properties of ANNs [Haykin, 1994]:

Generalization: ANNs are not limited to solving only those problems for which they are trained, they are able
to carry out a process of generalization and solve problems that had never been presented before. Contextual
information is treated with great ease, since the activation process of any element may be potentially influenced
by any other network element.

Fault Tolerance: ANNs exhibit graceful degradation, meaning that fail over processing elements or connec-
tions overall system, does not come to a standstill, its effectiveness may be degraded somewhat but, as happens
in the brain neuronal death, this need not entail catastrophic failures. This property is supported primarily by
the redundancy that may exist between the processing units, as the network knowledge is distributed among
the different synaptic connections. Even some types of neural architectures are able to undertake a process of
rehabilitation and neuronal reconfiguration such that the responsibility for processing and or function of the
damaged areas are redistributed to healthy areas, as occurs in certain brain areas.

Graded responses: the answers can be graded, thus indicating network confidence in their results. This is an
important property that may, in some cases, must be taken into account in the decision making.

Uniformity in the analysis and design: the guidelines followed in any domain for analysis and design of
ANNs based applications are the same, which is difficult to achieve by other computational approaches.

Apart of these properties do not forget either those already discussed in previous sections, such as mas-
sive parallelism inherent to the ANNs, which allows high-speed processing and facilitates hardware
implementations, and the propensity towards learning, being the most important existing paradigm in this
regard.

8



1.2. Neural computation

Considering the nature and characteristics of the problems to be solved, we find another way to view the
properties and capabilities of ANNs. It is absolutely necessary to analyze the nature of the problems to be ad-
dressed to determine the viability of the neural computing paradigm for such problems. That is, if this paradigm
is presented as the most suitable, or can be combined with other approaches, because what we must understand
that is not all the problems could be resolved using ANNs. In general, the problems addressed by ANNs usually
need any of these features, which are characteristic of artificial neural networks:

Data Availability: since ANNs are guided by examples we need to have a high amount of data to be used
in the learning process, testing and validation. If there were insufficient data we must go to the creation of the
so-called false data.

Problems based on behaviour, not knowledge: problems in which there is no knowledge on how to solve
the function that represents it, we could say, the algorithm to address resolution. These are clear cases in which
ANNs have much to say because by learning ANNs can infer and represent that knowledge and achieve the
optimal solution to the problem.

Presence of inaccuracy and or incompleteness: as happens with biological systems, ANNs are qualified
to address inaccuracies and incompleteness in the data, such as those due to noise, interference or overlapping
data and missing data.

Need for real-time execution: upon completion of the learning process of the ANNs, performance is very
fast, making them particularly suited to solve problems in real time. This happens both with software imple-
mentations or simulations, and more with hardware ones.

Non-stationary environments: ANNs are trained to work in non-stationary environments where the statisti-
cal characteristics of the data or the problem to solve vary over time, allowing residual learning processes that
adapt to such changes.

In general, applications that are useful for ANNs is marked by the following tasks that are able to address
[Haykin, 1994] [Jain et al., 1996]:

Pattern Classification: the set of data or patterns that is presented to the ANN are divided into a number of
categories or classes. The ANN has to learn to distinguish the class of a given pattern, typically generating dis-
criminant functions or decision boundaries from the training set. In cases where there is not a priori information
about which category the patterns belong, this task is often called clustering.

Approximation of functions: from a data set, possibly noisy, indicating the input and output of an unknown
function, it consists in estimate this function. This problem is also known in the statistical literature as re-
gression. The pattern classification problem could also be considered as a particular function approximation
problem, for both tasks it is used the term of functions mapping.

Associative memories: is able to store information so that it can be retrieved later. The event that triggers
the recovery may be the presentation of a partial or distorted input contained in memory, in these cases is
usually called content addressable memory. If the dimensions of the entries match the outputs is also called
self-association, as opposed to the hetero-association, in which it does not occur. This kind of behaviour, as in
the above tasks, is also called pairings mappings of input patterns with output patterns.

Prediction: is, from a temporal sequence of data occurred in the past, predict the next value in the sequence.
Weather forecasts or predictions of the stock market are among their typical applications.
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Table 1.1: Most commonly used radial basis functions. Source: [Wirth, 2001]
Name Mathematical expression Parameters

Gaussian ϕ(r) = e
−r2

2σ2 With normalization parameter σ > 0

Multi-quadratic ϕ(r) = (r2 +σ2)1/2 With normalization parameter σ > 0

Generalized multi-quadratic ϕ(r) = (r2 +σ2)β σ > 0 and β > 0

Inverse multi-quadratic ϕ(r) = (r2 +σ2)−1/2 With normalization parameter σ > 0

Generalized & inverse multi-quadratic ϕ(r) = (r2 +σ2)−β σ > 0 and β > 0

Cubic r3

Control: the process control is to maintain a working system within a range of parameters considered appro-
priate, precisely, one of the most complex systems, the human body, consists of thousands of muscle fibers that
must act synchronously, or the brain, so it is clear how interesting solutions based on artificial neural networks
for these tasks.

Optimization: tasks where there is a set of independent variables or parameters, an objective function or
cost, which depends on such variables, and a series of restrictions on the range thereof. They should look for
the values of the variables without violating the constraints, minimize or maximize the objective function. In
general there are many problems in different areas of knowledge that can be addressed from this perspective,
even the aforementioned control tasks are closely related to optimization tasks.

Classification and evaluation problems The networks are distinguished into two main groups according to
the type of problem to solve. Thus, the network of a first type, associate a particular input configuration stimu-
late, input or standard output. They are referred as associators, classificatory or patterns recognizers networks.
The second type of networks, handle problems that requires judgement, so called evaluative networks.

Sort a network as an evaluator or idolatress can help you decide how many neurons should have and how to
organize. Evaluating network has a single neuron in the output layer that indicates the result of the evaluation
performed with the input information. A network recognizer has many output neurons, at least one for each
element that should be recognized.

1.2.3 Radial basis function networks

The networks of radial basis neurons (RBFN) came from the hand of Moody, Darken, Renals, Poggio and
Giross. The RBFN are multilayer feed-forward networks and generally fully connected . It is composed of a
single hidden layer neuron whose activation function consist of a radial basis function. The output layer are
linear combinations of the activation functions of the hidden layer, in perspective, a RBFN can be understood
as a linear combination of nonlinear multiple local functions.

Park and Sandberg formally demonstrated that RBFN are universal approximators [Park and Sandberg,
1991], and based on those functions defines hyperspheres or hiperelipses that divides the input space, so that
each neuron constructs a nonlinear and local approximation in a region of the input space. Applications of this
type of ANN are varied in either analysis series, image processing , automatic speech recognition , or to perform
medical diagnoses among others. In general, all kind of classification and pattern recognition problems [Sahin,
1997].

1.2.3.1 Radial basis function

Radial basis function are those whose output depends on the distance from the entrance to a point called the
center. Are symmetric about x = 0. Define hyperspheres or hiperelipses that divide the input space.

A function of this type is defined by at least two parameters:

• Center C: Point where the function has one outer
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1.2. Neural computation

Figure 1.5: Local approximations representation

• Width σ : Magnitude of the variation of the function as it moves away from the center.

Radial basis functions have a local character functions as they have the maximum level close to the maximum
of its travel when the pattern input X(n) is close to the center of a neuron. As the pattern moves away from
the center, the value of the function is tending to the minimum route. The outputs of the RBFN are therefore a
linear combination of Gaussian functions, each of which is activated to a certain portion of the space defined
by the input patterns. The most common function is the Gaussian, see equation 1.1, although there are many
others in Table 1.1:

ϕ(r) = e
−r2

2σ2 (1.1)

1.2.3.2 Architecture

Radial basis function networks, as ANN described are composed of three main layers:

• Input layer: Feed the hidden layer transmitting the information from the environment.

• Hidden layer: Each process element i from the hidden layer has a radial basis function associated, in
which manner that represents an existing class or category in the dataset, where each class is given
as (Ci,σi). Ci represents a cluster center (weights associated with each neuron i) and σi represents the
deviation of the width or dilation radial basis function associated with that item. The output of each
hidden layer element ZI(n) is calculated as the distance that exists between the input pattern X(n) to the
center of the cluster Ci weighted inversely by σi and then applying that value of radial basis function:

zi(n) = ϕ(
p

∑
j=1

(x j(n)− c ji)
2)1/2 (1.2)

Where ϕ is a radial basis function.

• Output layer:

Each processing element calculates the net value as a linear combination of the outputs of the
processing elements in the hidden layer. The transfer function is linear activation and therefore: For a
standard n, X(n) = (x1(n),x2(n), .....xp(n)), the output of the network associated with each element k of
the output layer is obtained as follows:

yk(n) =
m

∑
i=1

wikzi(n)+µk para k = 1,2, ...,r (1.3)

Where wik are the weights associated to the element k of the output layer and element i of the hidden
layer, weighting each output ZI(n) from corresponding processing element of the hidden layer. The term
µk, is a threshold term known and associated with each processing element of the output layer.
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1.2.3.3 Learning

The learning process of the RBFN is produced in two steps. First, set the various parameters of the activation
functions of hidden neurons and then adjusting the connection weights and thresholds of the network. These
two processes can be performed either separately or simultaneously [Font Fernández et al., 2009]. The hybrid
method learning consists in using the classification algorithm to calculate the input space and deviations centres,
while the weights of the network connections are calculated using the back propagation algorithm.

For the calculation of the centres and deviations of radial basis functions network, first, we perform the
calculation of centres giving out the input space among the centroids of the whole network. Thereby establishing
a centroid dominated regions, such that one of these regions is defined by the input patterns group m nearest
to the centroid which dominates the region, providing a local character to the RBFN. Observe the figure 1.5
to visualize the concept of local approximations. In it, each centroid represents a function of a neuron in the
hidden layer, containing the various patterns according to the distance from the centroid of this function.

1.2.4 Backpropagation ANN

The multilayer perceptron [Werbos, 1974] or MLP ANN model is the Most Widely used in practice for solv-
ing Both classification and regression problems, having Demonstrated capacity as universal approximator its
functions.

The MLP is known as a neural network model with forward propagation, which is characterized by layering
of neurons whose inputs are the outputs of the preceding layer, except for the input layer, which receives
information from the environment. The most commonly learning algorithm is the back propagation, based
on gradient descent of an arbitrary error function [Rumelhart et al., 1986], from which we give the name of
backpropagation network (BPN).

BPNs are generally used in solving complex problems. These networks learn to classify a set of pairs of
inputs and output by employing a two phase cycle understood as propagation and adaptation or propagation.
After the stimulus generated by the pattern units in the input layer, the generated signal is propagated to the
last layer, producing an output. The output generated is then compared with the desired output and then gener-
ates an error signal that is computed for each unit of the output layer. Generated error signals are transmitted
back to each of the nodes of the previous layer that receive a portion of the total error generated by the net-
work in proportion to their contribution in it, thus correcting the weights of the network in the process called
Backpropagation [Freeman and Skapura, 1991].

Each processing unit of the network learns certain characteristics of the input space, thus being able to
"chop" the input space and establishing its corresponding pair in the output set. Providing a mathematical ap-
proach, the backpropagation algorithm seeks the minimum of the error function of the weight space, using
the gradient descent method [Rojas, 1996]. The combination of weights which minimizes the error function is
considered a solution of the learning process. Backpropagation networks, despite the similarities in the MLP
architecture, differs because the use thereof downward gradient is necessary to ensure the continuity and dif-
ferentiability of the error function, so that the step function of the MLP generates inconsistency with the above
statement.

1.2.4.1 Architecture

A BPN is composed of three types of layers associated with a completely hierarchical model. The number of
hidden layers is undetermined, although the most common is using just one hidden layer for the vast majority
of problems.

• Input Layer: The input layer is fully connected to the next hidden layer. Generally, the input layer usually
employs an identity function that propagates the values associated with the data set given. Thus the output
provided by the input layer is expressed as follows:

yi(x) = fidentidad(x) (1.4)

where f is an identity function and i indicates the ith neuron input.
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Figure 1.6: Influence of the parameter α in the hyperbolic tangent function. blue (α = 3), red (α = 1), green
(α = 0.3) [Villasana, 2010]

• Hidden layer: Each unit of the hidden layer, as described in neural network section, performs a weighted
sum of the spread signals from the input layer to the weight associated with each connection. The result
of this operation is operated by an activation function that results in a given trigger value. This value of
activation will be used in spreading the signal to the next layer. The output value of each neuron in this
layer can be expressed as follows:

y j(x) = tanh(
ne

∑
i
(yi ∗wi j)) (1.5)

Where j indicates the value of the jth neuron in the hidden layer, tanh activation function is applied, ne

is the total neurons in the input layer, wi j the weight associated between each neuron of the input layer
and the hidden layer neuron, and where yi is the value of output corresponding input neuron.

• Output layer: The output layer performs the same process that hidden layers, although the functions used
for the activation are of threshold type, usually this is not necessary, specially in estimating the posterior
probability, for which is recommend to use the same configuration in all hidden neurons.

yz(x) = tanh(
nh

∑
j
(y j ∗w jz)) (1.6)

Where z indicates the value of z− th neuron of the output layer, tanh activation function is applied, nh is
the total number of neurons of the hidden layer, w jz is the weight associated between each hidden layer
neuron and the output neuron, and where yz is the output value of the corresponding hidden neuron. To
determine the output value, threshold function is used with the following expression:

ϕ(yz(x)) (1.7)

Activation functions

• The hyperbolic tangent function is a continuous adaptation of the step function. Is continuous between
the values [−1,1] and infinitely differentiable. See Figure 1.6 to observe the influence of alpha parameter
of the equation 1.8.

tanh(x) =
exα − e−xα

exα + e−xα
(1.8)

• The sigmoid function is continuous between the values [0,1] and infinitely differentiable. The trigger
value is calculated as follows:

sigmoid(x) =
1

1+ e−α∗x (1.9)

The form taken by the sigmoid function is also possible to transform via parameter α .
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Output functions The threshold function is applied as output function of activation values. Thus, the output
function is expressed as:

ϕ(x) =

{
1 si x>= α

0 si x< α

Where α represents the value determined as a discriminant. The continuous output of an MLP, under the
proper assumptions, can be interpreted as a posterior probability estimation to belong to a class C [Lippmann,
1994].

In some ANNs as the MLP is used an optional unit that provides constant stimulation entry node called bias.
This unit is fully connected to the corresponding layer and generates a bias node for each of the layers, except
for the input. This unit has a weight associated involving both the learning process and generation of the error
signal, and in the subsequent classification process. Bias node may provide in certain problems the necessary
stimulation to overcome the threshold value discussed above.

1.2.4.2 Learning in MLP

Many algorithms have been proposed so far to deal with the problem of appropriate weight-update by doing
some sort of parameter adaptation during learning. They can roughly be separated into two categories: global
and local strategies.

Global adaptation techniques make use of the knowledge of the state of the entire network to modify global
parameters, as the backpropagation learning algorithm does modifying the direction of the previous weight-step,
whereas local strategies use only weight-specific information (e.g. the partial derivative) to adapt weight specific
parameters. Besides the fact that local adaptation strategies are more closely related to the concept of neural
learning and are better suited for parallel implementations, their superiority over global learning algorithms has
been demonstrated [Schiffmann et al., 1994]. Firstly, we will describe the backpropagation algorithm, used in
this work. Secondly, we will study briefly the RPROP algorithm to compare it with a local strategy.

Backpropagation algorithm The learning process begin with a random assignment of weighted connections
between neurons.

• Feed Forward: Calculate the output value for each neuron on the output layer, where the output value is
determined by the equation network described above in 1.6 .

• Backpropagate: Calculate the mean square error ( RMSE ) between the output activation of the out-
put neuron and the value of the standard input provided to the network. This error is calculated by the
expression:

1
2

n

∑
i
||yi− pi||2 (1.10)

where n is the number of output neurons , yi the output value of the ith neuron and pi the desired output
value of the ith pattern presented at the input. This error is back-propagated layer by layer, calculating
the contribution of each element to the total error in the direction of the gradient and updating the value
of the weights to correct this contribution. The algorithm will terminate when the mean square error is
small enough or depending on the number of epochs defined. An epoch consists on introduce to the net
all the patterns of the learning set. Thus, it is understood that the purpose of the algorithm consists in
reducing the RMSE, tracing the descent towards the global minimum of the error. The correction of the
weights in each iteration , will be as follows:

∆w(t) = w(t−1)+λ∇E|w(t)+µ ∗∆w(t−1) (1.11)

Where w is the value of the weights in an instant or iteration t, λ is the learning rate, ∇E is the partial
derivative of the error function and µ is the momentum parameter, that is multiplied by the change in
the weights in the previous moment. This parameter was introduced to the standard backpropagation
algorithm of Werbos [Werbos, 1974] by Rumelhart [Rumelhart et al., 1987]. The momentum is trend
that reduces oscillations always considering the changes made in the previous iteration, see Figure 1.7. It
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Figure 1.7: Backpropagation with momentum (a) and without momentum (b). [Rojas, 1996]

also increases the amount of correction when the slope or first derivative is constant, thus improving the
avoiding of the minimum locals.

1.3 Ensembles

The Non-free-lunch theorem [Wolpert and Macready, 1995] states that there is no learning algorithm that could
achieve in every domain an optimal classifier, since each learning paradigm converge differently under distinct
input spaces creating various decision regions in the features space. As each ANN makes generalization errors
on different subsets of the input space, it is possible to argue that the collective decision produced by the com-
plete set, or a screened subset, of networks, with an appropriate collective decision strategy, is less likely to be
in error than the decision made by any of the individual networks [Hansen and Salamon, 1990, Yates and Par-
tridge, 1996,Opitz and Maclin, 1999,Dietterich, 2000]. In general terms, a strong classifier could be constructed
combining diverse decision regions aiming to achieve an overall higher accuracy [Kittler et al., 1998,Kuncheva
and Whitaker, 2003, Brown et al., 2005, Ko and Sabourin, 2013]. It is also common to name them Ensemble of
Classifiers (EoC) [Ko and Sabourin, 2013,Kittler et al., 1998]. Being able to tackle complex tasks in an efficient
way has been another proof feature of the neural networks ensemble (NNE) approach. A NNE combines a set
of neural networks which learn to subdivide the task and thereby solve it more efficiently and elegantly. In a
sense, the NNE follows a divide-and-conquer approach by dividing the data space into smaller and easier-to
learn partitions, where each ANN learns only one of the simpler partitions. The underlying complex decision
boundary can then be approximated by an appropriate combination of different ANNs. NNEs are also very ap-
propriate in applications where large volumes of data must be analyzed. It is necessary partitioning the data into
smaller subsets, training different ANNs with different partitions of data, and combining their outputs using an
intelligent combination rule. The situation of having too little data can also be handled using ensemble sys-
tems [Polikar, 2006]. A NNE offers several advantages over a monolithic ANN: It can perform more complex
tasks than any of its components. It is more robust than a monolithic neural network. It can produce a reduc-
tion of variance and increase in confidence of the decision, and can show graceful performance degradation in
situations where only a subset of neural networks in the ensemble are performing correctly [Liu and Higuchi,
2003].

Brown and Kuncheva showed in a simulated study how the smaller ensembles tend to exhibit a large variance
and how it is reduced with larger ensembles [Brown and Kuncheva, 2010]. In such a way, the greater the number
of classifiers we use in ensembles, the greater we reduce the risk of making a particularly poor selection.
This property emerges from the diversity of decision made by the base classifiers. In this sense, the ideal
situation is made up of a large number of classifiers with relative good accuracy and high diversity among them.
Diversity can be sought in a explicit or implicit manner [Brown et al., 2005]. Algorithms like bagging [Breiman,
1996] and its variations (random forest [Breiman, 2001] or pasting small votes [Breiman, 1999]), the boosting
algorithm [Schapire, 1990] or the random subspaces [Ho, 1998] constitute an example of an implicit method
of creating diversity in ensembles. Hereafter, we are going to study all of them trying to make an updated
categorization, adding the study of diversity measures and how it has been exploited explicitly as a measure in
newer algorithms.

As we have pointed out, the critical success of an ensemble creation routine lies in the diversity creation
because an ensemble can not perform well without some amount of diversity [Kuncheva et al., 2002,Kuncheva
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Figure 1.8: Combining classifiers that are trained on different subsets of the training data. Retrieved from
[Polikar, 2006]

and Whitaker, 2003, Kittler et al., 1998, Ruta and Gabrys, 2001, Ruta and Gabrys, 2005]. It is preferable that
the classifiers commit errors on different instances and therefore cancelling out those errors while combining
the decisions, see figure 1.8, to achieve a more accurate recognition rate [Fumera et al., 2008, Kuncheva et al.,
2002, Kuncheva and Whitaker, 2003, Kittler et al., 1998, Ruta and Gabrys, 2001, Ruta and Gabrys, 2005]. It is
unusual to generate both high levels of success as a high diversity, at least in homogeneous input spaces, being
relatively preferable to get weak learners and combine their decision [Schapire, 1990].

The conventional ensemble generating methods to enhance classification accuracy, referred as Multiple
Classifier System (MCS) [Ko and Sabourin, 2013] create diversity from combining the decisions of multi-
ple classifiers, but a new interesting approach referred as Simple-Classifier-based Multiple Classifier System
(SMCS) aim to create diversity from combining the decision from one classifier introducing seudo data points
correlated to a original reference sample and thus, generating diversity transferring the computational cost from
training to the decision phase with interesting results and defining new odds [Ko and Sabourin, 2013]. We can
derive a summary process from the MCS construction consisting of three steps [Ho, 1998, Kuncheva et al.,
2002, Schapire, 1990, Ko and Sabourin, 2013]:

1. Prepare the data subsets taking into account features or instances diversity. In a heterogeneous input space
it could be a straightforward process.

2. Train a classifier/s for each data subset available.
3. Select the best subset of classifiers that make up the ensemble with the higher accuracy.
These steps are justified by the fact that we know that diversity is necessary to enhance ensemble perfor-

mance, but we also know that diversity is not sufficient to improve the ensemble accuracy (Step 3). As Hansen
and Salamon stated, a necessary and sufficient condition for a majority voting ensemble of classifiers to be
more accurate than any of its individual members is if the classifiers are accurate and diverse [Hansen and Sala-
mon, 1990]. There is an important drawback of computational complexity underlying this accepted method
of overproduction and select classifiers, but this is because nowadays it has not been possible to find com-
plete solutions to the questions that Kuncheva and Whitaker have been doing for over a decade [Kuncheva and
Whitaker, 2003], which we reproduce in its entirety:
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1.3. Ensembles

1. How do we define and measure diversity?
2. How are the various measures of diversity related to each other?
3. How are the measures related to the accuracy of the group?
4. Is there a measure that is best for the purposes of developing committees that minimize error?
5. How can we use the measures in designing the classifier ensemble?
With this questions in mind the necessity of capitalize the diversity measures in the process of selecting the

best subset borns, or wrapping all the process into a termed Ensemble learning that learn a target function by
training a number of individual learners by combining their predictions [Opitz and Shavlik, 1996a, Liu et al.,
2000, Brown, 2004], exploiting explictly the diversity measures. For example, we would see how the Negative
Correlation Learning has shown a directly control over the covariance term in the bias-variance-covariance
tradeoff [Brown, 2004], dealing the problem like a regression one, where the output of each classifier is defined
as the posterior probability value because the zero-one loss function employed in the classification field do not
apply as well. As Brown stated in [Brown et al., 2005] if an ensemble is better than a single classifier depends
on if it operates on a regression or classification context. To find an effectiveness diversity measure to apply it on
ensemble learning as a zero-one loss function, ergo, in a classification context, is still an active research [Brown
and Kuncheva, 2010]. Hereafter, we introduce those discussed explicit and implicit methods following the
taxonomy of methods for creating diversity developed by Brown, Wayatt, Harris and Yao in [Brown et al.,
2005].

1.3.1 Diversity Generating Methods

During the learning phase, a function approximator follows a trajectory in hypothesis space and its desirable
for creating diversity that each learner define different trajectories. In one hand, the capabilites of the implicit
methods for generating diversity lies on random alterations in the hypothesis space to construct distinct trajec-
tories, in the other hand, explicit methods define deterministically how different are those trajectories [Brown
et al., 2005]. This dichotomy rises a high level taxonomy, but we must descend to a more specific level in which
we can explain all the methods developed until now. In [Brown et al., 2005], the authors defined a new taxon-
omy from the one of four factors defined by Sharkey [Sharkey, 1999] for artificial neural networks (ANN): The
initial weights, the training data used, the architecture of the networks and the training algorithm used, adding
the concepts that use penalty terms in the learning algorithm as in [Brown, 2004, Liu, 1998, Rosen, 1996].

Hence, there are 3 general ways according to the hypothesis space to generate diversity in ensembles:

• Starting point in Hypothesis Space. Manipulate the initial weigths alter the starting point of the trajec-
tory in the hypothesis space. It has been proved that this is the least effective mechanism to reach a good
diversity [Opitz and Maclin, 1999]. Sharkey [Sharkey et al., 1995] discovered that multiple ANN trained
with backpropagation starting from random points converge to the same or very similar local optima.
Partridge and Yates [Partridge and Yates, 1996, Yates and Partridge, 1996] conducted a very extensive
experiment to demonstrate empirically that the more important factor for creating diversity in ANN, in
order, were : a) network type (RBF and MLP were proved), b) training set structure, c) number of hidden
units and d) random initialization of weights. [Parmanto et al., 1995] compared the 10k-fold, the bagging
and random initialization of weights, being the last one, the worst option. In the field of using an explicit
use of diversity we can find the studies of Maclin and Savlik [Maclin and Shavlik, 1995] where they
used competitive learning to initialize ANN to create a set of initial weights so far from the origin weight
space, thereby potentially increasing the set of reachable local minima, or the fast committe learning
study of Swann and Allinson [Swann and Allinson, 1998] where they generate diversity by secuencially
selecting the members of an ensemble as weights snapshots during the learning of an individual.

• Set of Accessible Hypothesis. We understand by set of accessible hypothesis as the set of instances with
a set of features that make up the dataset through which we will train, test and validate our classifier. It
is expected that the alteration in some way of the training set will affect the diversity of the model, thus,
different classifiers trained with variations of the training set will result in different convergences and
therefore in different errors. This alteration could be made in the features, in the instances or both spaces.
It is also possible to generate diversity through the alteration of the classifier architecture.
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– Manipulating Training Data In a problem with K features and N instances we might want to
train some classifiers with different subset of features but with the same instances. A method of
generation diversity that follows this scheme is known as random subspaces [Ho, 1998,Zenobi and
Cunningham, 2001]. Another possibility is the distribution of instances into different train subsets
which train implicit diverse classifiers. The hypothesis of Schapire was that given a weak learning
algorithm or a C class weakly learnable, we can construct a strong classifier based on a weak one
producing some different distributions of the instances that each classifier learns. This idea led to
the development of algorithms such as Adaboost [Freund and Schapire, 1997], Bagging [Breiman,
1996], Arcing [Breiman, 1998], and many other variations. The bagging algorithm propose to cre-
ate a set of train subsets, randomly selecting N patterns with replacement from the original set of
N patterns, leaving the remaining instances for testing and validation. Bagging almost always pro-
duces a better classifier than a single neural network [Opitz and Maclin, 1997]. Other option could
be the combination of both views as in the random forest approach [Breiman, 2001], or the rotation
forest [Rodríguez et al., 2006], only applicable to decision trees, where each node creation requires
consideration of a feature that is selected by different statistical methods or randomly. The most
simple method (no honest) is to combine the decision of the k-fold validation [Krogh and Vedelsby,
1995], where different classifier are trained under different distributions, generally random, of the
data set. Parvin [Parvin et al., 2013] suggest an interesting idea, based on the boosting methods,
that consists in distributing those instances in different subsets depending on the distance from the
clusters they occupy in the space, thus, creating subsets of boundaries instances, cluster instances,
etc. in a heuristic way, more than randomly.

Some authors assert that combining the results of one classifier on different feature sets is far more
effective than combining the results of different classifiers on one feature set [Duin and Tax, 2000].
Ho [Ho, 1998] concludes that is a good approach to problems where there is a large amount of re-
dundant features. The input decimation (ID) approach [Oza and Tumer, 2001] decompose problems
in L-class problems, training a set of classifiers attending to different features in specific classes. As
the ID is orthogonal to approaches that search in the pattern space as bagging or boosting, Oza and
Tumer [Tumer and Oza, 2003] suggest to use the ID as a complementary method in bagging and
boosting. More methods of classes codification, such the error correcting output codes [Dietterich
and Bakiri, 1991] or combination of class codification with features manipulation were proposed
recently [Sesmero et al., 2012]. One versus all strategy (OVA) consists on a division technique that
train N binary classifiers that distinguish one class from all the remaining classes. Although it is
not a diversity generation method itself, this kind of strategy is supposed to be at least as good as
multiclass classification [Rifkin and Klautau, 2004], seeking to reduce the instability of the systems
that is produced by the high correlation among the classes of the problem under study.

Other approaches tries to generate diversity through the introduction of noise into de data [Raviv and
Intrator, 1996, Sharkey et al., 1997] or in the outputs of the dataset [Breiman, 2000]. The distortion
methods [Sharkey et al., 2000] propose to alter the training data set in order to generate diversity
introducing some kind of noise into the patterns. It is proved that whit a gaussian noise alteration
the ensemble could achieve a better generalisation error [Raviv and Intrator, 1996]

– Manipulation of Architectures Manipulation of architectures is composed of two mainly proce-
dures: 1) To build hybrid ensembles, with any kind of algorithm working to make up an unified
decision [Gutta and Wechsler, 1996, Duin and Tax, 2000]. 2) To build ensembles which consist of
member with the same architecture but varying elements into that architecture. Another possibil-
ity could be the ensemble of members with variations in both the architecture and configuration.
Partridge [Partridge, 1996,Partridge and Yates, 1996] concludes that variations into the same archi-
tecture lead to poorly results in ensembles diversity, finding the opposite in the diversity generations
through the use of multiple architecture, concretely he did it with MLPs and RBFs. More recently
reviews point to this approach as the most growing trend in the number of publications [Wozniak
et al., 2014]. Wolpert stated that each classifier has its specific competence domains where they
overcome other competing algorithms. In this sense, it is not possible to design a single classifier
exceeds all others for each classification task. MCS try to select always the local optimal model
from the available pool of trained classifiers [Wolpert, 2002]. Some, but not many researches have
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1.3. Ensembles

been done in this scope [Partridge, 1996, Opitz and Shavlik, 1996b, Islam et al., 2003, Wang et al.,
2000, Langdon et al., 2002, Woods et al., 1997].

• Traversal of Hypothesis Space. Given a particular data set, that is, a search space of instances and
features, and given a particularly selected architecture as MLP, we can modify the method of learning
that features space. Modifying how we traverse the space determines a method of diversity creation.
We distinguish two kind of methods here, the penalty term based and population-based. The first one
enforce a specific bias for each members of the ensemble, creating implicitly diversity. The second one
discard those elements that does not create diversity into the ensemble, exploring all possible kind of
modifications of the members to increase diversity.

– Penalty Methods The diversity creation methods based on a penalty term are based on a modifica-
tion of the error function, taking into account the diversity that each member puts into the ensemble
to increase or decrease the penalty term. It could be understood as an ensemble learning algorithm
where the it forces the bias of each member, some overfitting or underfitting indeed. For a learning
algorithm based on the minimization of the error, i.e. the backpropagation algorithm, the penalty
method introduction means an addition term as expressed in equation 1.12

1
2

n

∑
i
||yi− pi||2 +λR (1.12)

where λ is the weight of the penalty term R, usually guided by a diversity function, yi the output
of the classifier for the i-th instance, pi the desired output of the i-th pattern. For a λ = 0 case, we
have the standard backpropagation algorithm. The first penalty method was created by Rosen in
1996 [Rosen, 1996], consisting in a negative correlation learning posteriorly extended by Liu [Liu,
1998].

Ensemble Learning using Decorrelated Neural Networks [Rosen, 1996] The first work on
penalty methods was conducted by Rosen in 1996, consisting on solving regression problems with
neural network ensembles. The back propagation networks (BPN) were trained with a Fletcher-
Reeves conjugate gradient algorithm because is faster than Delta-Bar-Delta and the quickprop
implementations [Rosen, 1996], and also there is no need of parameter tunning. The BPNs was
combined linearly in the ensemble. The neural networks ensembles decorrelated are produced by
introducing a penalty term in the error function of the neural networks, in this case, a squared error
function as in the equation 1.13.

E j =
N

∑
p=1

(
(yp− f j(~xp))

2 +
j−1

∑
i=1

λ (t)d(i, j)P(~xp,yp, fi, f j)

)
(1.13)

where p is the p− th pattern, yp is the desired output for the correspondent p, f j is the output of the
j member of the ensemble, λ (t) is a (possibly) time dependent scaling function, d is an indicator
function for decorrelation between networks i and j, P is a correlation penalty function and N is
the number of patterns. The findings point to an improvement in the results obtained by a moderate
decorrelation in the network training.

Ensemble learning via negative correlation [Liu and Yao, 1999] The proposal of Liu and Yao
[Liu and Yao, 1999] is practically identical to the previous one, except for slight differences in the
formulation given in the equation 1.14, where we have tried to keep the same nomenclature: E is
the error of the network j, N is the number of patterns, λ is now independent from time or iterations
and regulates the strong of the penalty, P is the correlation penalty function, yp is the desired output
for pattern p and f j(p) is the output of the network j for the pattern p.

E j =
1
N

N

∑
p=1

1
2
(yp− f j(p))2 +

1
N

N

∑
p=1

λPj(p) (1.14)
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The penalty function Pj can be seen in the equation 1.15.

Pj(p) = ( f j(p)− f (p))∑
i6= j

( fi(p)− f (p)) (1.15)

The training process is produced simultaneously in all the networks that compose the ensemble,
such that the networks tries to minimize not only the difference respect to the pattern but also the
diversity of the members into the ensemble.

– Evolutionary Algorithms Evolutionary Algorithms (EAs) were proposed by Holland [Holland,
1992] as a global optimization approach inspired by natural evolution and survival of the fittest.
EAs use a solution population (chromosomes) which evolves by means of selection, crossover and
mutation operators [Mitchell, 1998]. There are many works that surround the idea of combine dif-
ferent diversity creation methods under a EA. Opitz [Opitz, 1999] proposed a genetic ensemble
feature selection that improves the wrapper proposal of [Kohavi and John, 1997] in terms of com-
putational efficiency. The proposal of [Zhou et al., 2002,Junfei et al., 2010] consist in using diversity
measures into the fitness function of the ensemble generation while produce diverse members by
manipulating the feature space.
The EAs are not a diversity creation method itself, but allow us to create ensembles with differ-
ent criteria searching in the whole (features, instances, learning parameters, learning architecture,
learning algorithms, etc.) space. Thus, leading to a set of individuals that are accurate and diverse in
a efficient manner [Lofstrom et al., 2010, Kim and Cho, 2008, Nabavi-Kerizi et al., 2010, Chandra
and Yao, 2006, Rahman et al., 2010, Liu et al., 2000, Yao et al., 1998].

– Others diversity creation methods

Mixture of Experts The gating network could be seen as the paradigm in which mixture experts
consists in. The gating network is an ANN on a second level in a ensemble, which environment data
is composed of the outputs of a group of classifiers, thus, creating a set of weights for the outputs
of each classifier member in the ensemble [Polikar, 2006]. An important point of this methods is
that individual classifiers are experts in some portion of the feature space and the gating network
selects the most appropriate classifier, or classifiers weighted with respect to their expertise. It can
therefore be seen as a classifier selection algorithm, or mostly as a combination rule, similar to the
weighted majority voting scheme that we will present in the next subsections.

1.3.2 Diversity measures

In a diversity creation method, we have one overproduction member phase and a selection of members phase.
The first one consist in one or multiple methods described above, the second part of the ensemble creation
could be based on a selection of the best members (by accuracy or other measures), or on a selection of the
most diverse members. Diversity measures described below are examples to be used in a member selection of
ensembles. Diversity in ensemble systems is an active research area due to there is no general nor effective
measure that ensure a good generalization performance in every application domain. We distinguish two kind
of diversity measures, depending on if we measure by pairs of classifiers or if we measure a global diversity.

It has been tested that there is no diversity measure strongly correlated with the validation set accuracy in
real data sets [Johansson et al., 2007], and in the commonly used data sets [Kuncheva and Whitaker, 2003], but
it is also proved that ensembles as an aggregating of diverse classifiers reach higher accuracy [Johansson et al.,
2007].

Classification of classifier outputs Following the classification made in [Kuncheva and Whitaker, 2003], if
we denote D = {D1, ...,DL} as a set (pool, committee, mixture, team, ensemble) of classifiers, Ω = {ω1, ...,ωc}
be a set of class labels and x ∈ Rn be a vector of n features to be labelled in Ω. There are three general
possibilities for the classifier outputs:

1. A c-element vector µ i = [di,1(x), ...,di,c]
T where a special case of this vector is a probability distribution

vector over Ω estimating the posterior probabilities P(ωs|x) where s = 1, ...,c.
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2. Class label Di(x) ∈Ω, i = 1, ...,L

3. Correct/incorrect decision (the oracle output) is the most commonly used and represent a vector where
Di(x) is 1 if x is recognized correctly by Di, and 0 otherwise.

Hereafter, we work with the oracle outputs in the diversity measures, as they were employed in this work
and it is the most simply manner to work with the information.

1.3.2.1 Pairwise diversity measures

Between a pair of classifiers, we define the notation of the diversity of a given instance as in the table 1.2, where
total, N = N00 +N01 +N10 +N11. Based on this notation we can build some pairwise diversity measures, see
1.3. A summary interpretation of those expression can be observed in Table 1.5.

Table 1.2: A 2 × 2 table of the relationship between a pair of classifiers [Kuncheva and Whitaker, 2003], where
correct means a coincidence with the desired output and wrong a misclassification error.

Dk correct (1) Dk wrong (0)

Di correct (1) N11 N10

Di wrong (0) N01 N00

Table 1.3: Pairwise diversity measures summary [Kuncheva and Whitaker, 2003]

Diversity measure Expression

Q-statistic Qi,k =
N11N00−N01N10

N11N00+N01N10

Correlation coefficient p pi,k =
N11N00−N01N10√

(N11+N10)(N01+N00)(N11+N01)(N10+N00)

The disagreement measure Disi,k =
N01+N10

N11+N00+N01N10

The double-fault measure DFi,k =
N00

N11+N00+N01N10

Q statistic promotes selection of members which have a certain balance between correct and incorrect de-
cisions, penalizing members who are not complementary. The correlation coefficient is similar to Q statistic,
but look for more complete complementarity penalizing the cases in which anyone member detect the class
correctly. The disagreement measure also promotes the selection of members whose classifications are more
absolutely complementary in all the instances. The double-fault mainly penalizes the members pairs where
no one classify correctly the instance presented. Except the correlation coefficient, all the other measures are
interesting because present simple computational cost, these being a problem in pairwise measures.

In general, pairwise diversity measures lack the ability to select members that may be key in solving certain
instances.

1.3.2.2 Non Pairwise diversity measures

A good review of non pairwise diversity measures have been described in [Kuncheva and Whitaker, 2003], see
table 1.4. To understand the notation of the table, N is the number of instances of the dataset, L the number
of classifiers, l is the number of classifier that correctly identify the presence of the class j in a given instance
from the vector of classes z. The entropy expression tries to promote those combinations that maintain a balance
between classifiers that classify correctly and those who do not. The Kohavi Wolpert is similar to the entropy
expression but promoting combinations in a exponential manner. The interrater k also take into account the
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members accuracy, so that the expression promotes combinations of diverse and accurate members. It is note-
worthy that the non pairwise measures select best combinations of members than the pairwise ones. The non
pairwise diversity measures also select combinations with less redundant information, thus, with less members.
The inconvenience of the application of non pairwise measures relies to computational costs. The interpretation
of those measures can be observed in Table 1.5.

Table 1.4: Non-pairwise diversity measures summary

Diversity measure Expression

Entropy E = 1
N ∑

N
j=1

1
L−dL/2emin{l(z j),L− l(z j)}

Kohavi-Wolpert KW = 1
NL2 ∑

N
j=1 l(z j)(L− l(z j))

Interrater agreement k k = 1−
1
L ∑

N
j=1 l(z j)(L−l(z j))

N(L−1)p̄(1−p̄) , where p̄ = 1
N ∑

N
j=1 ∑

L
i=1 y ji

Table 1.5: Summary of the 7 previous measures of diversity. Source: [Kuncheva and Whitaker, 2003]. The
arrow specifies whether diversity is greater if the measure is lower (↓) or greater (↑). P stands for Pairwise and
S stands for Symmetrical

Name ↓ / ↑ P S References

Q-statistic Q (↓) Y Y [Yule, 1900]

Correlation coefficient p (↓) Y Y [Sneath & Sokal, 1973]

Disagreement measure Dis (↑) Y Y [Ho, 1998; Skalak, 1996]

Double-fault measure DF (↓) Y N [Giacinto & Roli, 2001]

Kohavi-Wolpert variance KW (↑) N Y [Kohavi & Wolpert, 1996]

Interrater agreement k (↓) N Y [Dietterich, 2000b; Fleiss, 1981]

Entropy measure Ent (↑) N Y [Cunningham & Carney, 2000]

1.3.3 Combination Rules

Independently from the diversity of the classifiers, their accuracy and other considerations taken into account
to achieve a better ensemble system, the combination rules define the last step on the process of building such
systems. We can combine the continuous or the discrete outputs of the classifiers. The decision can be given
if we work in a classification or in a regression context, thus, we have to combine the continuous outputs
in a regression context, but we could also combine continuous or discrete outputs in a classification context.
Kuncheva and Duin [Kuncheva et al., 2001] describe a simple method of creating a decision profile matrix
scheme in order to easily apply different fusion methods and functions.

1.3.3.1 Fusion of Continuous outputs

The continuous outputs allow to get a richer ensemble output for a given instance, as it could be possible to
offer a posterior probability of the classes and the relevance of the outputs given. In the table 1.6 we summarize
the different schemes of continuous output fusion [Polikar, 2006], where D is the number of classifiers, d is
the output of the classifier, c is the index of the classes array, C is the number of classes. The weight w of each
classifier is equal to the inverse of the number e elevated to the test error.
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Table 1.6: Summary of continuous outputs fusion techniques and its expressions

Name of the Fusion Techniques Acronym Expression

Mean Mean c[c]Cc=0(x) =
1
D ∑

D
i=1 dic

Weighted Average WA c[c]Cc=0(x) = ∑
D
i=1 wicdic

Trimmed Mean TM


The most optimistic and pessimistic classifiers

are removed from the ensemble before calculating

the mean. Trimmed mean at limit 50%

is equivalent to the median rule.

Minimum Min c[c]Cc=0(x) = min(∑D
i=1 dic)

Maximum Max c[c]C(x)
c=0 = max(∑D

i=1 dic)

Median Med c[c]Cc=0(x) = median(∑D
i=1 dic)

Product Prod c[c]Cc=0(x) =
1
D(∏

D
i=1 dic)

1.3.3.2 Fusion of Class labels

On the other hand, in a fusion label context there are mechanism to find out the relevance of the outputs of each
classifier, usually relating the relevance of each classifier to a test-set evaluation error. We summarize the fusion
of class labels techniques described in [Polikar, 2006] in the table 1.7, but generalizing the expressions for a
multi-label context, where D is the number of classifiers, d is the output of the classifier, c is the index of the
classes array, C is the number of classes. The weight w of each classifier is equal to the inverse of the number e
elevated to the test error.

Table 1.7: Summary of class label fusion techniques and it expressions

Name of the Fusion Techniques Acronym Mathematical expression

Unanimous voting UV c[c]Cc=0 =

1 if (
D

∑
i=1

dic) == D

0 otherwise

Simple majority voting SMV c[c]Cc=0 =

1 if (
D

∑
i=1

dic) ==
D
2
+1

0 otherwise

Majority voting MV maxC
c=0 ∑

D
i=1 di

Weighted majority voting WMV c[c]Cc=0 =

1 if
C

∑
c=0

D

∑
i=1

wicdic > θ

0 otherwise

1.4 State of the art
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Related to the problem defined by the dataset of fluorescence spectra of BFs compounds, we describe some
works that deal with the same problem employing machine learning techniques also. It should be noted that
there is no work related to this field that uses ensembles nor diversity methods for creating ensembles except
those produced by authors of [Suárez Araujo et al., 2013].

Supervised techniques The review of the state of the art in the resolution of complex mixtures from fluores-
cence spectra allow us to know that there are some supervised techniques applied to this problem. In [Vasilescu
et al., 2011], ANN were used to detect the presence of pollution in the black sea of Romania, obtaining an accu-
racy of 90%. The data source was a LIDAR and a channel relationship method was used to create some different
kinds of spectra, at different wave lengths and intensity, improving the selectivity of the signals [Almhdi et al.,
2007]. On the other hand, [Almhdi et al., 2007] made a comparison of the architectures ANN and support vector
machines (SVM), in identifying three types of oil in water samples from fluorescence spectra. The results were
not very relevant, but similar among architectures. Another works compared RBF, MLP and SMVs in identi-
fying nanocrystals encoded microspheres in flow cytometry [Clarke, 2008]. The results were very satisfactory,
obtaining an accuracy of 97.1% with the SVM. Another work based on SVM was performed in [Römer et al.,
2011]. The aim of that work is to design an intelligent system that will identify different pathogens which may
cause diseases in plants. Dataset comprises fluorescence spectra corresponding to samples of the pathogen in
inoculated leaves. The results obtained in the SVM were 79.2% for day 2, 77.8% for the third day and 87.5% on
the fourth day from the beginning of the pathogen activity. Other studies have tried to identify these components
in fluorescence spectra with mathematical techniques, rather than machine learning techniques [Albani, 2008].
The authors of this work also produced some related in this field by creating ensembles [Suárez Araujo et al.,
2013, García Báez et al., 2012, Álvarez Romero et al., 2013], with diversity measures based on error correla-
tions, employing also data fusion schemes and comparing ensembles of unsupervised and supervised members.
In [García Báez et al., 2012] was performed a learning process with mixture spectra also in the learning and test
sets. Other studies have tried to test the suitability of the unification of the BM classes and MBC [Suárez Araujo
et al., 2013]. Misclassification with separate classes were very high.

Unsupervised techniques In [Chowdary et al., 2009], we can find a PCA analysis of the data, comparing the
subsequently supervised and unsupervised methods of learning, in order to diagnose different breast tumours
from autofluorescence spectra at 325nm excitation, belonging normal, tissues and tissues from benign and
malignant tumours. In [Lv and Gu, 2012] were employed a kernel PCA technique plus a canonical correlation
analysis in order to extract the features of the fluorescence spectroscopy samples. In [Dorney et al., 2012],
was developed a clustering with k-means algorithm and principal component analysis on a data set obtained
from a fluorescence spectroscopy applied to the detection of biological cells. In [Suarez Araujo et al., 2010]
a unsupervised technique based on ANN were used (HUMANN). This work employed also pure substances
spectra to perform a system that identify complex mixtures of the same components.
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Chapter 2

Design of Experiments

2.1 Methods

We present here the chemical experiments needed to make up the information environment of fluorescence
spectra of BFs, the data set provided with that information, and the computational solution adopted to solve this
application problem.

2.1.1 Chemical experiments

There is a need for a rich and representative data environment when aiming to develop automatic systems for
resolution of fungicides mixtures with a high degree of overlap and which are friendly, sensitive and yet efficient
and powerful, in other words, an intelligent solution. To this end, we have carried out a series of experiments
which have allowed us to build up a corpus of spectrum data which are apt for the development, fine adjustment
and validation of the artificial system which we propose. We have taken into account the following requirements
that facilitate its study using our system based on artificial neuronal networks:

• Working with a sufficiently high number of compounds, which allows us to come to reliable conclusions
about the results obtained.

• Establishing a group of physical parameters for the generation of spectra which avoid undesirable alter-
ations. These parameters include the ∆λ and the wavelength interval belonging to each spectrum.

• Obtaining synchronous spectra from different ∆λ for the compounds used and for any mixtures of them.
In this way, we will contrast the performance of the resolution of the mixture depending on the ∆λ of
spectrum used in the process of resolution.

• Varying the concentration range of each compound to automatically determine and model the alterations
that took place, in the resolution, as a result.

These requirements will be established in the selection of some groups of spectra with particular character-
istics. Some of these characteristics will define the problem to be resolved. Others are designed to avoid the
destabilising effect that the variability of these characteristics could have on the shape of the spectra, which
would make it difficult to obtain good results in the identifications. We used six varying concentrations adapted
to the luminescent characteristics of each compound, see Fig 2.1.

The data set was provided by the Environmental Chemical Analysis Group at the ULPGC. For each of
the solutions, we generated the corresponding synchronous spectra for the optimum, middle and average ∆λ

values, see Table 2.1. The optimum ∆λ is the value which allows for the maximum spectral intensity at a
wavelength and which allows it to be distinguished from other member compounds of the same family. Usually,
the optimum ∆λ for a compound is around the difference between its optimum λem and its optimum λex.
All spectra were repeated three times to guarantee measurements and define error margins in measurements.
One hundred combinations of mixtures were generated automatically for each kind of spectra and λem,λex,∆λ

values, with the only conditioning factors being that the compound distributions should be as balanced as
possible with respect to the number of compounds present in each mixture, the concentrations of the same and
the type of compound used, see Tables 2.2 and 2.3.
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2. Design of Experiments
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Figure 2.1: Fluorescence spectra representation of the data set. Clean sample (CS) contains the spectra of a
sample without pesticides.

This experimental chemical design, make up the information environment that is going to be used in the
neural computation solution.
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2.1. Methods

Table 2.1: General characteristics of the data set of benzimidazole fungicides. em means emission and ex exci-
tation.

Characteristics Benzimidazole family

Compounds 4: Benomyl (BM), Carbendazim (MBC),
Fuberidazol (FB), Thiabendazol (TBZ)

Concentrations/compound C0=absence, C1 to C6:
BM Interval = 250-1,500µg/l, ∆c = 250µg/l

MBC Interval = 250-1,500µg/l, ∆c = 250µg/l
FB Interval = 25-150µg/l, ∆c = 25µg/l

TBZ Interval = 2.5-15µg/l, ∆c = 2.5µg/l

S1: Mean/TBZ optimum ∆λ = 47nm, interval = 200-400nm
4 synchronous S2: Median ∆λ = 53nm, interval = 200-400nm

S3: MBC-BM optimum ∆λ = 59nm, interval = 200-400nm
S4: FB optimum ∆λ = 29nm, interval = 200-400nm

S5: Mean λem = 327nm, interval = 200-315nm
3 excitation S6: Median λem = 325nm, interval = 200-315nm

S7: FB optimum λem = 341nm, interval = 200-315nm

1 emission S8: Mean/Median λex = 277nm, interval = 300-400nm

Table 2.2: Experiment design criteria, guided by concentration of compounds in the mixture

Concentrations Number of Compounds/Mixture Total

2 3 4

1 11 17 17 45
2 21 13 14 48
3 15 14 17 46
4 13 15 18 46
5 16 20 9 45
6 16 14 17 47

Total 92 93 92 277

Mixtures 46 31 23 100

27



2. Design of Experiments

Table 2.3: Experiment design criteria, guided by number of compounds in the mixture

Compounds Number of Compounds/Mixture Total

2 3 4

BM 23 23 23 69
MBC 23 24 23 70

FB 22 24 23 69
TBZ 24 22 23 69

Total 92 93 92 277

Mixtures 46 31 23 100
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2.1. Methods

2.1.2 Computational experiments

The neural computation system proposed consist of a pre-processing and processing modules, both based on
ANNs with a supervised learning scheme, see Figure 2.2.

2.1.2.1 Preprocessing stage

The pre-processing stage included the fluorescence spectra modelling and the attainment of the feature vector
developed in [García Báez, 2005,Suárez Araujo et al., 2009]. Is usually possible to use generic methods during
the feature extraction. If you possess knowledge about the particular problem we want to represent, it can be
very helpful in design. Using as a base the developments and later experimental studies made by Lloyd and
Evett [Lloyd and Evett, 1977] and later by Cabaniss [Cabaniss, 1991], the fluorescence spectra can be modelled
by a Gaussian distribution of intensity versus reciprocal wavelength (frequency). Synchronous spectra can be
modelled also by double Gaussian distributions. All spectra used in our developments have been previously
normalized to the unit.

In this way any spectrum can be approximate, for a given wavelength λ , according to expression 2.1.

I(λ )'= ∑
i

ai · exp

(
−
(λ−1−µ

−1
i )2

2σ
−2
i

)
(2.1)

Where µi are the different values (cm) where the gaussian are centred, σi are it standard deviation(cm) and
ai are the amplitude of those gaussians. Changing the notation as in equation 2.2:

gausi(λ
−1)'= exp

(
−
(λ−1−µ

−1
i )2

2σ
−2
i

)
(2.2)

We obtain the approximation of the spectrum as:

I(λ )' a ·gaus(λ−1) (2.3)

Where gaus(λ−1) is the vector formed by each of the gausi(λ
−1) and a are the features. We will work with

a linear approximation for the mixture model, such that the spectrum of a mixture will be represented by a
linear combination of reference spectra [Lawton and Martin, 1985]. The reference spectra are the spectra of the
compounds which can be identified in a mixture.

I(λ )' c · r(λ ) = ∑
i

ciri(λ ) (2.4)

I(λ )' c ·Ar(λ ) ·gaus(λ−1) (2.5)

Where r(λ ) is the reference spectra and c is a vector with the contributions of each of the spectra of r(λ )
in the mixture. c is then a vector which characterises a mixture and which is ideal for use as a vector of
characteristics for BPN. Spectral representation via Gaussian distribution will be carried out using RBFNs
[Bachiller et al., 1998] and the approximation of concentration coefficient vector (c) through a BPN. Two
RBFNs are used to obtain the spectral representation. One will determine the parameters which define the
Gaussian distribution and the other will approximate the intensities of the different spectra modelled. An initial
radial basis function network (RBFN1) is made up of an input layer of one neuron, a hidden layer whose number
of neurons coincides with the number of Gaussians which carry out the approximation of the real spectrum (in
our case 14 Gaussians) and an output layer the size of which determines the number of compounds which can
be identified in any mixture to be analysed. This network will allow us to determine the parameters that define
the Gaussian distributions which model the fluorescence spectra of each compound belonging to the fungicide
family and mixtures that can be found in real environmental samples. A second RBFN (RBFN2) is designed
to approximate the amplitudes of the spectra. Once the Gaussian approximations of the fluorescence spectra
are developed, the feature vector (c) is determined. The results obtained in this stage make up the information
environment of the BPN-based systems for the BFs fluorescence identification, which are employed in the
processing module. An environment made up of instances of 14 features.
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2. Design of Experiments
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Figure 2.2: Neural system scheme for fungicides detection with diversity creation methods.30



2.1. Methods

2.1.3 Processing stage

The proposal consists in diversity creation method of neural classifiers, in order to build different kind of
ensembles with the data set provided. The data set in a supervised scheme as the BPN, must be divided into 3
subsets to avoid overfitting. The set which measures the final capability of the ANN to generalise those spectra
from pure substances is the validation set, which is composed of all the mixtures available in all those diversity
creation methods. The pure substances spectra available are instances from 24 solutions of pure substances of
concentrations C1, C2, C3, C4, C5, and C6 for each substance, plus the spectra from the clean sample (CS), a
total of 25 instances. Each concentration for each substance has 3 spectra repetitions, being always in the same
subset. Hence, we have 75 spectra instances of pure substances for each kind of spectra. The distributions we
have done contains the 13,6% of the instances in the train set, the 6,4% into the test set and the 80% in the
validation set. The distribution into train and test sets, was made depending on the diversity creation method as
follows:

• Original distribution: We have made some previous experiments with the same distribution of the pat-
terns. That train set consisted in concentrations C2, C3, C5 and C6 of each substance plus de CS spectra.
The test set was made up of spectra from the remaining 8 solutions with concentrations C1 and C4.

• Bagging (Bgg): A total of 17 unique instances had to be part of the training set. The others goes to the
test set. The distribution was produced with replacement, in such a way that until the training set contains
17 unique instances new instances become part of this set. The process was repeated 96 times. Hence,
we had 96 different distributions for each type of spectra.

• Random Subspaces (RS): From the original distribution we selected a number of features randomly
such that we create 96 different distributions where all the spectra of each distribution contains the same
selected features. The selected features has to be the same in learning, test and validation sets.

• Negative Correlation Learning (NCL): We employed the original data set distribution. This method
simplifies the process of manipulating the instances and create diversity in an explicit manner.

• Weights Initialization (WI) and Hidden Nodes Variation (HNV): We made the same unified process
to compare the influence of the WI and the HNV over the original distribution.

The members of those ensemble are BPN with momentum [Rumelhart et al., 1987], a bias node, a hidden
layer and an output layer with the same number of neurons as BF classes we defined in both experiments, plus
the clean sample case, where there is no fungicide. The activation function employed in the BPN modules is
produced by an hyperbolic tangent function.

In order to determine the optimal configuration of the BPNs, 30 ANNs with aleatory weights initialization
were trained by each number of hidden nodes, from 3 to 10 elements, selecting the configuration that achieve
the lowest root mean square error (RMSE) and the lowest standard deviation from the test set, in that order. The
learning process stop criteria was guided by the sum of the test + learning RMSE . When an objective RMSE
of 0.01 is achieved the learning process stops. The maximum number of epochs is fixed to 20.000. When it
reaches the limit of epochs then the weights of the lowest total RMSE are recovered. This stopping criteria is
defined for this specific problem, because there is no overfitting observed in the test set. The thresholds of the
output nodes were determined by reducing the false negatives as most as possible, i.e., choosing the lowest
threshold while evaluating at each point of the learning plus test set.

The input in these single BPN systems acts as the feature vector of one single type of fluorescence spectra,
i.e. one BPN per each kind of spectra. Our ANN system consists in a neural ensemble approach, see Fig. 2.3,
whose members are the single BPN systems. Three strategies are needed to build an ensemble system: diversity
creation, selection members (nearly always) and a combination strategy. Firstly, we create diversity through
the use of n BPN members, in ensembles with diverse fluorescence type in the input space. Over that given
diversity, we propose different diversity creation methods, all of them based on ensemble scheme, see Fig. 2.3.

2.1.3.1 Diversity creation methods employed:

We have tried to cover the three main different types of diversity creation methods described in the introduction
section: Manipulation of the starting point in hypothesis space, the set of accessible hypothesis and the traversal
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Figure 2.3: BPN-based systems for detection of BFs.: BPN ensemble system

of the hypothesis space:

• Diversity creation method by manipulating the starting point in hypothesis space

– Initialization of weights

• Diversity creation method by manipulating the set of accessible hypothesis

– Manipulating Training Data

* Bagging

* Random subspaces

– Manipulation of architectures

* Number of hidden neurons

• Traversal of Hypothesis Space

– Penalty methods

* Negative correlation learning

Experiments in WI and HNV: The process may start with the definition of the specific parameters to use in
the architecture BPN. We summarize the process as follows:

• Overproduction

– Generate ANNs with different hidden nodes, from 3 process elements to 10.

– Generate 30 ANN by each number of hidden nodes with different randomly initialization weights.

• Selecting the best configuration:

– For each amount of hidden neurons, we select for each type of spectra the one which have the lowest
mean of the RMSE.

– If the case of some different amount of hidden neurons and the same RMSE is produced, then we
select the one with a lower standard deviation of the RMSE.

Once the best number of hidden nodes is defined for each spectra type, we will use that number to train each
BPN in the later experiments.
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2.1. Methods

Experiments in Bagging, Random Subspaces and NCL: Given the configuration from the experiments
described above, for each spectra type, we train by groups of multiple of 8 (one per spectra), from 8 to 96 BPN
members. This allow us to compare the results of the three main diversity creation methods (Bagging, NCL and
Random Subspaces) at least by the number of members in the ensemble, because the NCL has already its own
diversity measure during the learning process. In the NCL case we are going to test the influence of the penalty
term λ by creating the same ensembles with λ = 0.3,λ = 0.5,λ = 1.0.

2.1.3.2 Selection members strategy:

• Selection. We used two methods of selecting members, always guided by the test set, for ensembles
of multiple of 8, from 8 to 96 BPN members and taking into account the 8 type of spectra (conven-
tional+synchronous) separated, i.e: by groups of 16 we select the two most diverse/accurate classifiers
from each spectra:

– The most diverse members. For each diversity measure employed. We understand by most diverse
members, the member with a higher or lower (depending on the diversity measure) mean of the
diversity measure in pairwise cases. In the NCL case we didn’t applied diversity measure after the
learning process.

– The best members. We select the nth best elements by groups of the amount defined above.

Diversity measures employed. To select the most diverse members in order to get a higher accuracy in the
ensemble, we are going to evaluate the effectiveness of some diversity measures. Thus, allowing us to compare
methods with the overproduction and best members selection.

The diversity measures we are going to test are the pairwise-based described in the introduction. The non
pairwise diversity measures poses a computational problem when we try to calculate diversity in groups of a
determined amount of members, because we have to create all the combinations of classifiers and calculate the
diversity among them.

2.1.3.3 Combination Strategy

The combination strategies used are the SMV and WMV as a collective decision strategy of class label fusion.
The SMV collective decision strategy allows us to group the individual ANNs outputs that makes up the en-
semble in such a way that the correct decisions are amplified, and incorrect ones are eliminated. Furthermore,
SMV offers the possibility of comparing the diversity based on the same classifier to highlight the significance
of the different spectral characteristics in a simple manner to understand. The WMV gives more relevance to
those classifiers with higher accuracy.

We will also test the fusion of continuous outputs, which introduce more complexity in the experiments
because it is not irrelevant to measure the diversity as oracle outputs. One possibility would be to measure
the diversity from the discretized outputs and then fusion the continuous outputs of those selected members in
the ensemble, determining the threshold only in the ensemble over the test set. From the fusion of continuous
outputs we will test the mean, product, min, max and median combination rules. The decision of the classifier
is based on a threshold that is calculated in the same way in which the classifiers threshold is calculated, but
based on the continuous outputs of the classifiers test subset.

2.1.3.4 Software

The simultaneous resolution of complex BF mixtures is a multi-label problem, thus any input pattern will be
associated as belonging to as many classes as neurons having been fired in the output layer. This particular
problem characteristic is extremely important in the design and implementation of the proposed systems. A
new computational tool (MULLPY) has been designed and developed to efficiently and easily design, optimize
and ensemble the proposed systems. The tool is written in Python v3.3 [Oliphant, 2007], a language with high
attributes in scientific computation, and proven performance in intensive computational processes despite being
a scripting language [Álvarez Romero, 2012]. All of the architectures, diversity creation methods, member
selection, diversity measures, ensembles, as well as the validation and visualization process have been fully
developed in this language using numpy, scipy and matplotlib libraries support [Jones et al., 2013].
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2. Design of Experiments

Figure 2.4: Total time in hours for programming in different languages the same programs. Source: [Prechelt,
2000]

Python. Python is a high level language, interpreted (byte code), multi-platform, multi-paradigm and fully
object oriented, structured and functional. Its greatest potential lies in its wide variety of libraries, specifically
scientific libraries, as shown in Figure 2.5. Its aim consist in providing a very clean syntax to generate code
as readable as possible. The community that supports python looks to building code that will allow it to be re-
viewed and improved in the future. We will quote a few sentences of the python developer, which demonstrates
the convergence that has occurred in software engineering in recent decades:

• Explicit is better than implicit

• Simple is better than complex

• Complex is better than complicated

• Sparse is better than dense

• If the implementation is hard to explain, it’s a bad idea

• If the implementation is easy to explain, it may be a good idea

These ideas are reflected in the figure 2.4, making a python programmer much more productive.
Languages or programming environments very flexible and with high productivity typically offer less sat-

isfactory computational performance, see Figure 2.6. Despite that, the python language is highly flexible, dy-
namic and productive, and offer similar performance to those considered intensive computing languages such
Fortran, see Figure 2.7. To properly understand the table, it should be noted that Numpy is the math library
of the Scipy project, whose code is optimized and proven by extensive scientific community [Chudoba et al.,
2013], and that Cython is a Python library that allows introducing explicit code interpreter, to improve perfor-
mance substantially in those critical fragments of intensive computational cost. The memory consumption is
usually one of the weaknesses of interpreted languages. However, as shown in Figure 2.8, we see that not only
python presents these shortcomings, but obtains very satisfactory results to be an interpreted language, showing
an improvement factor of 2 over java in this aspect [Prechelt, 2000].
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2.1. Methods

Figure 2.5: Python‘s Library tree

Figure 2.6: Program run time on the z1000 data set. Three programs were timed out with no output after
about 21 minutes. The bad/good ratios range from 1.5 for Tcl up to 27 for C++. Note the logarithmic axis.
Source: [Prechelt, 2000]
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Figure 2.7: Performance Comparison of programming languages for intensive mathematical computation.
Source: [Wilbers et al., ]

Figure 2.8: Amount of memory required by multiple programs in different languages. Source: [Prechelt, 2000]
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Chapter 3

Analysis of generating diversity methods in
the design of intelligent systems for BFs
detection in complex mixtures

In this chapter, we present the analysis of diversity creating methods, applied to the resolution of complex
mixtures of BF from fluorescence spectra with neural ensembles. We also analyse the quantity of diversity
generated by each method and the results obtained by using different combination rules. We will evaluate the
influence of the different diversity measures on the accuracy of the ensemble. These analyses also describes
the influence of the concentrations of substances in complex mixtures, as well as the influence of the number
of substances in mixtures. Also, an evaluation study of the various assemblies is presented by using the ROC
curves.

3.1 Classifiers evaluation

Many times we have the need to assess whether a supervised classifier is better than another. One possible
comparison that can be made is that the classifier that best percentage of correctly classified have is the best
classifier. In this and other approaches, the basic process involves calculation of positives (false and true) and
in the calculation of the negative (true and false). Positive are understood as all those active classifier outputs,
as well as negative are inhibitory outputs of the classifier. In both cases, when we speak of true positive or
negative, we are considering that the output given by the classifier corresponds to the desired output of the
input pattern. False negatives (FN) or false positives (FP) occur when the expected output does not match with
the output of the classifier. However, there is a more formal approach, based on the calculation of the area under
the ROC curve of the classifier. The larger the area under the ROC curve, the better the classifier. As well as
the ROC curve, there are many others formal approach that takes advantage of the computation of FN and FP,
true negatives (TN) and true positives (TP), as the accuracy, hamming loss, error rates, f measure, recall, kappa
and so on. We are going to use a more particular approach for this specific problem, because the systems used
requires a mixture error function, which we defined with respect to the class detected in any one mixture. This
error function is shown in the equations (3.1), where NCND is the number of classes present in the mixture
undetected by the system, FN; NCBD is the number of classes detected by the system which were not present
in the mixture, FP and NCIM is the total number of classes in the mixture.

E = EFP +EFN ; EFP =
NCBD
NCIM

; EFN =
NCND
NCIM

. (3.1)

The upper limit of this function error is equal to the NCBD in cases where NCIM is equal to one. It means
that the worst E that we can find in this work is equal to 4. The validation set has no instances with NCIM equal
to zero, so it can not be infinite.

As mentioned before, the highest diagnostic accuracy of a test results in a shift up and to the left of the ROC
curve. This suggests that the area under the ROC curve can be used as a convenient index of the overall accuracy
of the test: maximum accuracy corresponds to the area under the curve of 1 and a minimum value of 0.5. When
the ROC curve is generated by the empirical method, regardless of any ties or the area can be approximated by
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the trapezoidal rule, that is, as the sum of the areas of all rectangles and trapezoids (corresponding to the ties)
which form under the curve [Forcada, 2003]. In Figure 3.1, graphically describes the process of analysis of the
ROC curve. The dashed red line represents the value that a random classifier or classifier with hit rate of 50%,
presented in a curve of this type.

Figure 3.1: Receiver operating characteristic (ROC). Source: wikipedia

3.2 Results and discussion

We evaluate the results from the tables of Errors, the figures of Error by concentration and the figures of error
by the number of classes in any mixture. The results on the tables present a set of ensembles with a different
amount of members, from 8 to 96, where 8 means to have 1 member from each kind of the 8 spectra which
we work with. The different groups of columns, result from the selection of the most diverse BPNs, applying
different diversity pairwise measures, where each amount also means that we select the most diverse members
from each kind of spectra in the test set, i.e. the ensemble of 24 members selected by diversity measure Q take
the 3 most diverse members from each kind of spectra. The best members selection follows the same procedures
using test error instead of diversity measures. The figures of error by concentration and classes present in the
mixture of the best combination of each diversity creation method are also shown. Firstly, we present a briefly
comparison among diversity creation methods and the better ensembles under the SMV scheme. After that, we
compare within the same method the results of different combination rules application.

First of all, is important to remark that the results presented by this classifiers vary greatly with respect to
previous works [García Báez et al., 2012, Álvarez Romero et al., 2013, Suárez Araujo et al., 2013] because
of the limit imposed on the number of iterations performed due to the large amount of computational time
required for all diversity creation methods. In these previous works, in the absence of overfitting the learning
process continues up to almost absolute zero, which has resulted in a generalization accuracy increase. Another
important different about error reduction through the combination of members in that previous works is that
we made a greedy search into the all possible combinations space, finding a combination with an E = 0.016.
The best ensemble with all types of spectra gave an error value of 0.05 which constitutes the value to overcome
in this study. In order to draw conclusions about the best method of creating diversity is considered more
interesting to build weaker classifiers that can bring greater diversity to the ensembles. On the other hand,
without the presence of classifiers with an error different to 0.0 in test set, the selection of the members to better
cover the decision space becomes a very complex task.
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Table 3.1: Average mixture errors and their standard deviation between parentheses using neural ensembles with HNV and WI diversity creation methods and diversity
measures with SMV. The best member E was 0.521.

DF Dis p Q Best
Members E EFN EFP E EFN EFP E EFN EFP E EFN EFP E EFN EFP

HNV

8 0.647(0.203) 0.647(0.203) 0.000(0.000) 0.596(0.202) 0.596(0.202) 0.000(0.000) 0.647(0.203) 0.647(0.203) 0.000(0.000) 0.647(0.203) 0.647(0.203) 0.000(0.000) 0.626(0.202) 0.626(0.202) 0.000(0.000)
16 0.609(0.202) 0.609(0.202) 0.000(0.000) 0.663(0.203) 0.663(0.203) 0.000(0.000) 0.663(0.203) 0.663(0.203) 0.000(0.000) 0.663(0.203) 0.663(0.203) 0.000(0.000) 0.672(0.206) 0.672(0.206) 0.000(0.000)
24 0.669(0.204) 0.669(0.204) 0.000(0.000) 0.616(0.202) 0.616(0.202) 0.000(0.000) 0.669(0.204) 0.669(0.204) 0.000(0.000) 0.669(0.204) 0.669(0.204) 0.000(0.000) 0.684(0.206) 0.684(0.206) 0.000(0.000)
32 0.664(0.204) 0.664(0.204) 0.000(0.000) 0.620(0.202) 0.620(0.202) 0.000(0.000) 0.664(0.204) 0.664(0.204) 0.000(0.000) 0.664(0.204) 0.664(0.204) 0.000(0.000) 0.673(0.205) 0.673(0.205) 0.000(0.000)
40 0.668(0.204) 0.668(0.204) 0.000(0.000) 0.615(0.202) 0.615(0.202) 0.000(0.000) 0.668(0.204) 0.668(0.204) 0.000(0.000) 0.668(0.204) 0.668(0.204) 0.000(0.000) 0.671(0.205) 0.671(0.205) 0.000(0.000)
48 0.672(0.205) 0.672(0.205) 0.000(0.000) 0.617(0.202) 0.617(0.202) 0.000(0.000) 0.672(0.205) 0.672(0.205) 0.000(0.000) 0.672(0.205) 0.672(0.205) 0.000(0.000) 0.672(0.205) 0.672(0.205) 0.000(0.000)
56 0.670(0.205) 0.670(0.205) 0.000(0.000) 0.633(0.203) 0.633(0.203) 0.000(0.000) 0.670(0.205) 0.670(0.205) 0.000(0.000) 0.670(0.205) 0.670(0.205) 0.000(0.000) 0.672(0.205) 0.672(0.205) 0.000(0.000)
64 0.669(0.204) 0.669(0.204) 0.000(0.000) 0.642(0.204) 0.642(0.204) 0.000(0.000) 0.669(0.204) 0.669(0.204) 0.000(0.000) 0.669(0.204) 0.669(0.204) 0.000(0.000) 0.671(0.205) 0.671(0.205) 0.000(0.000)
72 0.669(0.204) 0.669(0.204) 0.000(0.000) 0.636(0.204) 0.636(0.204) 0.000(0.000) 0.669(0.204) 0.669(0.204) 0.000(0.000) 0.669(0.204) 0.669(0.204) 0.000(0.000) 0.674(0.205) 0.674(0.205) 0.000(0.000)
80 0.671(0.205) 0.671(0.205) 0.000(0.000) 0.636(0.204) 0.636(0.204) 0.000(0.000) 0.671(0.205) 0.671(0.205) 0.000(0.000) 0.671(0.205) 0.671(0.205) 0.000(0.000) 0.671(0.205) 0.671(0.205) 0.000(0.000)
88 0.669(0.204) 0.669(0.204) 0.000(0.000) 0.636(0.204) 0.636(0.204) 0.000(0.000) 0.669(0.204) 0.669(0.204) 0.000(0.000) 0.669(0.204) 0.669(0.204) 0.000(0.000) 0.668(0.205) 0.668(0.205) 0.000(0.000)
96 0.666(0.204) 0.666(0.204) 0.000(0.000) 0.636(0.204) 0.636(0.204) 0.000(0.000) 0.666(0.204) 0.666(0.204) 0.000(0.000) 0.666(0.204) 0.666(0.204) 0.000(0.000) 0.668(0.205) 0.668(0.205) 0.000(0.000)
All 0.643(0.204) 0.643(0.204) 0.000(0.000)

WI

8 0.589(0.198) 0.589(0.198) 0.000(0.000) 0.517(0.192) 0.517(0.192) 0.000(0.000) 0.589(0.198) 0.589(0.198) 0.000(0.000) 0.589(0.198) 0.589(0.198) 0.000(0.000) 0.592(0.199) 0.592(0.199) 0.000(0.000)
16 0.647(0.205) 0.647(0.205) 0.000(0.000) 0.514(0.192) 0.514(0.192) 0.000(0.000) 0.647(0.205) 0.647(0.205) 0.000(0.000) 0.647(0.205) 0.647(0.205) 0.000(0.000) 0.637(0.203) 0.637(0.203) 0.000(0.000)
24 0.661(0.205) 0.661(0.205) 0.000(0.000) 0.515(0.192) 0.515(0.192) 0.000(0.000) 0.661(0.205) 0.661(0.205) 0.000(0.000) 0.661(0.205) 0.661(0.205) 0.000(0.000) 0.638(0.203) 0.638(0.203) 0.000(0.000)
32 0.663(0.206) 0.663(0.206) 0.000(0.000) 0.520(0.192) 0.520(0.192) 0.000(0.000) 0.663(0.206) 0.663(0.206) 0.000(0.000) 0.663(0.206) 0.663(0.206) 0.000(0.000) 0.639(0.203) 0.639(0.203) 0.000(0.000)
40 0.661(0.205) 0.661(0.205) 0.000(0.000) 0.528(0.194) 0.528(0.194) 0.000(0.000) 0.661(0.205) 0.661(0.205) 0.000(0.000) 0.652(0.205) 0.652(0.205) 0.000(0.000) 0.639(0.203) 0.639(0.203) 0.000(0.000)
48 0.652(0.205) 0.652(0.205) 0.000(0.000) 0.538(0.194) 0.538(0.194) 0.000(0.000) 0.652(0.205) 0.652(0.205) 0.000(0.000) 0.665(0.206) 0.665(0.206) 0.000(0.000) 0.646(0.204) 0.646(0.204) 0.000(0.000)
56 0.665(0.206) 0.665(0.206) 0.000(0.000) 0.548(0.196) 0.548(0.196) 0.000(0.000) 0.665(0.206) 0.665(0.206) 0.000(0.000) 0.653(0.204) 0.653(0.204) 0.000(0.000) 0.644(0.204) 0.644(0.204) 0.000(0.000)
64 0.653(0.204) 0.653(0.204) 0.000(0.000) 0.554(0.196) 0.554(0.196) 0.000(0.000) 0.653(0.204) 0.653(0.204) 0.000(0.000) 0.661(0.205) 0.661(0.205) 0.000(0.000) 0.644(0.204) 0.644(0.204) 0.000(0.000)
72 0.675(0.206) 0.675(0.206) 0.000(0.000) 0.558(0.196) 0.558(0.196) 0.000(0.000) 0.675(0.206) 0.675(0.206) 0.000(0.000) 0.675(0.206) 0.675(0.206) 0.000(0.000) 0.643(0.204) 0.643(0.204) 0.000(0.000)
80 0.672(0.206) 0.672(0.206) 0.000(0.000) 0.560(0.196) 0.560(0.196) 0.000(0.000) 0.672(0.206) 0.672(0.206) 0.000(0.000) 0.672(0.206) 0.672(0.206) 0.000(0.000) 0.643(0.204) 0.643(0.204) 0.000(0.000)
88 0.674(0.206) 0.674(0.206) 0.000(0.000) 0.574(0.197) 0.574(0.197) 0.000(0.000) 0.674(0.206) 0.674(0.206) 0.000(0.000) 0.674(0.206) 0.674(0.206) 0.000(0.000) 0.643(0.204) 0.643(0.204) 0.000(0.000)
96 0.667(0.206) 0.667(0.206) 0.000(0.000) 0.585(0.198) 0.585(0.198) 0.000(0.000) 0.667(0.206) 0.667(0.206) 0.000(0.000) 0.667(0.206) 0.667(0.206) 0.000(0.000) 0.640(0.203) 0.640(0.203) 0.000(0.000)
All 0.643(0.204) 0.643(0.204) 0.000(0.000)
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The table 3.1 shows the results of HNV and WI methods. The best members in WI was made selecting the
first n elements of the selected amount of hidden neurons, from the 30 BPNs generated with that configuration,
for each m amount of members in the ensemble.

The best member column in HNV was made selecting the best 2 generations from the 30 BPNs of each
amount of hidden neurons of each spectra, in order to be possible to build ensembles of 96 members. The HNV
method offer poorest results than the WI method. These results seem pretty obvious, because it is not a method
of actual generation of diversity, but the use of all classifiers trained during the selection process for members.

From the point of view of the diversity measures we found that Dis achieved the best results in HNV method
as well as in the WI method. As we pointed in the definition of the diversity measures, the absence of products
in the formula prevents any anomalies in the results due to some products with zero member. In fact, the other
3 measures employed, DF , p and Q obtained the same best results. The selection of the best members to make
up the ensemble achieved best results in some cases than those 3 diversity measures in the HNV, but not in the
case of WI, at least in the case of 8 members. Generally, the diversity measures allow better ensembles than
selection by the best members. The number of members in the ensemble does not provide a better error of the
same. This results are obviously worst than the obtained in previous works, as we mentioned before, where
we achieved very optimized members, BPN3 with an error of 0.029 until the worst member, the BPN8, with
an error of 0.283 [Álvarez Romero et al., 2013]. This represents a deterioration in the generalization ability
of the members that will be difficult to overcome through their combination. The causes of this decline have
several sources, some already mentioned above. A much smaller number of epochs, introducing bias nodes in
the hidden layer, and the stopping criterion that sums the training error and the test to measure the objective
mistake.

From this point in advance, the number of hidden neurons, in order, for the different types of spectra are
defined as 4,4,4,4,10,3,9 and 4 as consequence of the evaluation by RMSE.
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Table 3.2: Average mixture errors of identification values and their standard deviation between parentheses using neural ensembles with Bagging and Random subspaces
diversity creation methods and diversity measures with SMV.

DF Dis p Q Best
Members E EFN EFP E EFN EFP E EFN EFP E EFN EFP E EFN EFP

Bagging

8 0.297(0.158) 0.267(0.149) 0.030(0.061) 0.308(0.159) 0.278(0.151) 0.030(0.061) 0.303(0.159) 0.273(0.150) 0.030(0.061) 0.296(0.157) 0.266(0.149) 0.030(0.061) 0.279(0.153) 0.249(0.144) 0.030(0.061)
16 0.270(0.151) 0.240(0.141) 0.030(0.061) 0.261(0.150) 0.231(0.140) 0.030(0.061) 0.267(0.150) 0.237(0.141) 0.030(0.061) 0.298(0.158) 0.268(0.149) 0.030(0.061) 0.260(0.149) 0.230(0.139) 0.030(0.061)
24 0.273(0.152) 0.243(0.143) 0.030(0.061) 0.268(0.152) 0.238(0.142) 0.030(0.061) 0.288(0.155) 0.258(0.146) 0.030(0.061) 0.280(0.153) 0.250(0.144) 0.030(0.061) 0.280(0.153) 0.250(0.144) 0.030(0.061)
32 0.286(0.154) 0.256(0.145) 0.030(0.061) 0.292(0.156) 0.262(0.147) 0.030(0.061) 0.263(0.149) 0.233(0.139) 0.030(0.061) 0.266(0.149) 0.236(0.140) 0.030(0.061) 0.286(0.154) 0.256(0.145) 0.030(0.061)
40 0.273(0.153) 0.243(0.143) 0.030(0.061) 0.307(0.160) 0.277(0.151) 0.030(0.061) 0.264(0.149) 0.234(0.139) 0.030(0.061) 0.262(0.148) 0.232(0.139) 0.030(0.061) 0.287(0.155) 0.257(0.146) 0.030(0.061)
48 0.257(0.149) 0.227(0.139) 0.030(0.061) 0.292(0.156) 0.262(0.147) 0.030(0.061) 0.261(0.148) 0.231(0.138) 0.030(0.061) 0.261(0.148) 0.231(0.138) 0.030(0.061) 0.283(0.154) 0.253(0.145) 0.030(0.061)
56 0.263(0.150) 0.233(0.141) 0.030(0.061) 0.300(0.158) 0.270(0.149) 0.030(0.061) 0.268(0.150) 0.238(0.141) 0.030(0.061) 0.259(0.148) 0.229(0.138) 0.030(0.061) 0.280(0.153) 0.250(0.144) 0.030(0.061)
64 0.280(0.154) 0.250(0.144) 0.030(0.061) 0.303(0.158) 0.273(0.150) 0.030(0.061) 0.256(0.147) 0.226(0.137) 0.030(0.061) 0.258(0.147) 0.228(0.137) 0.030(0.061) 0.279(0.153) 0.249(0.144) 0.030(0.061)
72 0.286(0.155) 0.256(0.146) 0.030(0.061) 0.307(0.159) 0.277(0.151) 0.030(0.061) 0.258(0.147) 0.228(0.137) 0.030(0.061) 0.254(0.146) 0.224(0.136) 0.030(0.061) 0.279(0.153) 0.249(0.144) 0.030(0.061)
80 0.281(0.154) 0.251(0.145) 0.030(0.061) 0.304(0.159) 0.274(0.150) 0.030(0.061) 0.261(0.148) 0.231(0.138) 0.030(0.061) 0.254(0.146) 0.224(0.136) 0.030(0.061) 0.279(0.153) 0.249(0.144) 0.030(0.061)
88 0.278(0.153) 0.248(0.144) 0.030(0.061) 0.310(0.160) 0.280(0.152) 0.030(0.061) 0.261(0.148) 0.231(0.138) 0.030(0.061) 0.261(0.148) 0.231(0.138) 0.030(0.061) 0.278(0.153) 0.248(0.143) 0.030(0.061)
96 0.279(0.153) 0.249(0.144) 0.030(0.061) 0.303(0.158) 0.273(0.150) 0.030(0.061) 0.264(0.148) 0.234(0.139) 0.030(0.061) 0.265(0.149) 0.235(0.139) 0.030(0.061) 0.276(0.152) 0.246(0.143) 0.030(0.061)
All 0.309(0.159) 0.279(0.150) 0.030(0.061)

RS

8 0.398(0.175) 0.398(0.175) 0.000(0.000) 0.403(0.174) 0.403(0.174) 0.000(0.000) 0.278(0.180) 0.178(0.124) 0.100(0.139) 0.162(0.116) 0.162(0.116) 0.000(0.000) 0.425(0.180) 0.425(0.180) 0.000(0.000)
16 0.408(0.177) 0.408(0.177) 0.000(0.000) 0.279(0.150) 0.279(0.150) 0.000(0.000) 0.329(0.190) 0.226(0.140) 0.103(0.140) 0.232(0.142) 0.232(0.142) 0.000(0.000) 0.440(0.182) 0.440(0.182) 0.000(0.000)
24 0.394(0.174) 0.394(0.174) 0.000(0.000) 0.266(0.148) 0.266(0.148) 0.000(0.000) 0.306(0.184) 0.233(0.142) 0.073(0.126) 0.237(0.143) 0.236(0.142) 0.002(0.014) 0.407(0.176) 0.407(0.176) 0.000(0.000)
32 0.389(0.173) 0.389(0.173) 0.000(0.000) 0.266(0.147) 0.266(0.147) 0.000(0.000) 0.267(0.167) 0.230(0.141) 0.037(0.095) 0.229(0.140) 0.229(0.140) 0.000(0.000) 0.357(0.166) 0.357(0.166) 0.000(0.000)
40 0.355(0.166) 0.355(0.166) 0.000(0.000) 0.279(0.149) 0.279(0.149) 0.000(0.000) 0.224(0.139) 0.224(0.139) 0.000(0.000) 0.224(0.139) 0.224(0.139) 0.000(0.000) 0.351(0.166) 0.351(0.166) 0.000(0.000)
48 0.372(0.169) 0.372(0.169) 0.000(0.000) 0.239(0.140) 0.239(0.140) 0.000(0.000) 0.198(0.131) 0.198(0.131) 0.000(0.000) 0.211(0.134) 0.211(0.134) 0.000(0.000) 0.348(0.165) 0.348(0.165) 0.000(0.000)
56 0.376(0.170) 0.376(0.170) 0.000(0.000) 0.236(0.140) 0.236(0.140) 0.000(0.000) 0.203(0.132) 0.203(0.132) 0.000(0.000) 0.204(0.132) 0.204(0.132) 0.000(0.000) 0.356(0.166) 0.356(0.166) 0.000(0.000)
64 0.405(0.175) 0.405(0.175) 0.000(0.000) 0.218(0.136) 0.218(0.136) 0.000(0.000) 0.210(0.134) 0.210(0.134) 0.000(0.000) 0.203(0.132) 0.203(0.132) 0.000(0.000) 0.368(0.168) 0.368(0.168) 0.000(0.000)
72 0.404(0.175) 0.404(0.175) 0.000(0.000) 0.238(0.140) 0.238(0.140) 0.000(0.000) 0.210(0.134) 0.210(0.134) 0.000(0.000) 0.203(0.132) 0.203(0.132) 0.000(0.000) 0.369(0.168) 0.369(0.168) 0.000(0.000)
80 0.400(0.174) 0.400(0.174) 0.000(0.000) 0.262(0.145) 0.262(0.145) 0.000(0.000) 0.211(0.134) 0.211(0.134) 0.000(0.000) 0.212(0.134) 0.212(0.134) 0.000(0.000) 0.365(0.168) 0.365(0.168) 0.000(0.000)
88 0.394(0.173) 0.394(0.173) 0.000(0.000) 0.255(0.143) 0.255(0.143) 0.000(0.000) 0.219(0.136) 0.219(0.136) 0.000(0.000) 0.210(0.134) 0.210(0.134) 0.000(0.000) 0.365(0.168) 0.365(0.168) 0.000(0.000)
96 0.381(0.170) 0.381(0.170) 0.000(0.000) 0.250(0.143) 0.250(0.143) 0.000(0.000) 0.212(0.134) 0.212(0.134) 0.000(0.000) 0.213(0.134) 0.213(0.134) 0.000(0.000) 0.360(0.168) 0.360(0.168) 0.000(0.000)
All 0.268(0.150) 0.238(0.141) 0.030(0.061)
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3. Analysis of generating diversity methods in the design of intelligent systems for BFs
detection in complex mixtures

In table 3.2, with the bagging method we does not found a correlation between the number of classifiers and
a decreasing of the error. The disagreement diversity measure application results in a worst accuracy than other
measures, even compared to the best member selection. Other consideration about the bagging method is the
increase of the false positive error.

The RS method achieved better results than the bagging, HNV and WI ones. The best results was obtained
by using the Q statistic to select members, also having more homogeneous behaviour and showing once again
that no diversity measure is able to get the best combination for any problem. Taking into account that the 8 best
members by test set of the RS method has an average error of 0.425, the values obtained by the combinations
selected by diversity measures highlight the importance of such measures. Moreover, RS obtained the best
results in combining all the classifiers generated during the experiments. The RS method has better results
in some diversity measures compared to Bgg method, but the best members ensemble and those ensembles
guided by the DF measure are worst than the reciprocal in Bgg. This highlight the importance of selecting
diverse members over the best members, specially in the RS case. The Bgg method results does not have high
variations over diversity measures and amount of members in the ensemble. This method also get better results
than HNV and WI.

In both cases, Bgg and RS, the combinations over 40 members in the ensemble are more stable, despite
the best case founded in RS has 8 members. In the figure 3.2, we can see how the problems in identification
comes from the low concentration errors, specially in mixtures of 3 components. The same occurs in the best
combination founded in the bagging method, see Figure 3.3. The Bgg had no FN problem in identifying the
MBC-BM class, but had higher FP error.
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3.2. Results and discussion

Figure 3.2: Influence of the concentration of the analytes in the mixture over the average of the errors for the
RS method: (a) FB, (b) TBZ and (c) MBC-BM. (d) Influence of the number of classes from the mixture in the
average of the errors of the mixtures.
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3. Analysis of generating diversity methods in the design of intelligent systems for BFs
detection in complex mixtures

Figure 3.3: Influence of the concentration of the analytes in the mixture over the average of the errors for the
Bgg method: (a) FB, (b) TBZ and (c) MBC-BM. (d) Influence of the number of classes from the mixture in the
average of the errors of the mixtures.
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3.2. Results and discussion

In table 3.3, we have compared the diversity creation method NCL, with different combination rules, differ-
ent values of λ and different amount of members in the ensemble. As we mentioned before, the original NCL
method has a correlation diversity measure and a mean combination rule. Here, we altered that consideration
just while taking decisions, not during the learning process. Related to the number of members, we can observe
very little variations in the results. There is not improvements in the results with higher number of members
and viceversa. In the case of the value of λ there is a correlation, near always, between the increase of the value
and the decrease of the ensemble error in mixture identification of BFs. As in other methods, we observe that
the Max combination rule produces better results than other rules like mean. It seems again to be related with
this data set, due to the difficulties in the detection of low concentration of BFs, select the max value of the
ensemble members provide more probabilities to get over the threshold, avoiding many FN errors. Despite that,
the mean rule tends to be more stable than others. The best result obtained in this experiment was with the Max
rule and λ = 1.0, with an error of 0.051. In some cases a reduction of the EFN was reduced to 0.038, but having
also a bigger EFP. The class fusion combination rules (SMV and WMV) produced acceptable results, but with
the increase of the number of member in the ensemble, there is also an increase of the total error. The WMV
corrects this influence by weighting the best members. In fact, the NCL with WMV and 40 members, had one
of the better results achieves in this study with an error of 0.059, but the most important thing, a EFN = 0.044,
which is one of the lowest together with the EFP. In the figure 3.4 (a), (b) and (c), we can see that low con-
centrations of all the classes related to fungicide are producing the errors, in mixtures of 2 and 3 classes 3.4(d).
The system have a good overall efficiency in terms of area under the curve 3.4(e).
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3. Analysis of generating diversity methods in the design of intelligent systems for BFs
detection in complex mixtures

Table 3.3: Average mixture errors of identification values and their standard deviation between parentheses
using neural ensembles with NCL scheme for different values of λ with some combination rules.

k = 0.3 k = 0.5 k = 1.0
Members E EFN EFP E EFN EFP E EFN EFP

NCL SMV

8 0.165(0.119) 0.165(0.119) 0.000(0.000) 0.159(0.118) 0.159(0.118) 0.000(0.000) 0.089(0.088) 0.089(0.088) 0.000(0.000)
16 0.175(0.123) 0.175(0.123) 0.000(0.000) 0.159(0.118) 0.159(0.118) 0.000(0.000) 0.154(0.116) 0.154(0.116) 0.000(0.000)
24 0.171(0.121) 0.171(0.121) 0.000(0.000) 0.163(0.118) 0.163(0.118) 0.000(0.000) 0.105(0.093) 0.105(0.093) 0.000(0.000)
32 0.187(0.128) 0.187(0.128) 0.000(0.000) 0.155(0.115) 0.155(0.115) 0.000(0.000) 0.117(0.100) 0.117(0.100) 0.000(0.000)
40 0.165(0.119) 0.165(0.119) 0.000(0.000) 0.148(0.113) 0.148(0.113) 0.000(0.000) 0.128(0.105) 0.128(0.105) 0.000(0.000)
48 0.166(0.119) 0.166(0.119) 0.000(0.000) 0.154(0.115) 0.154(0.115) 0.000(0.000) 0.139(0.111) 0.139(0.111) 0.000(0.000)
56 0.325(0.159) 0.325(0.159) 0.000(0.000) 0.321(0.157) 0.321(0.157) 0.000(0.000) 0.293(0.153) 0.293(0.153) 0.000(0.000)
64 0.323(0.159) 0.323(0.159) 0.000(0.000) 0.301(0.153) 0.301(0.153) 0.000(0.000) 0.300(0.154) 0.300(0.154) 0.000(0.000)
72 0.326(0.159) 0.326(0.159) 0.000(0.000) 0.316(0.157) 0.316(0.157) 0.000(0.000) 0.302(0.154) 0.302(0.154) 0.000(0.000)
80 0.313(0.156) 0.313(0.156) 0.000(0.000) 0.299(0.153) 0.299(0.153) 0.000(0.000) 0.294(0.153) 0.294(0.153) 0.000(0.000)
88 0.318(0.158) 0.318(0.158) 0.000(0.000) 0.303(0.154) 0.303(0.154) 0.000(0.000) 0.293(0.152) 0.293(0.152) 0.000(0.000)
96 0.319(0.158) 0.319(0.158) 0.000(0.000) 0.294(0.152) 0.294(0.152) 0.000(0.000) 0.296(0.153) 0.296(0.153) 0.000(0.000)

NCL WMV

8 0.141(0.114) 0.108(0.097) 0.033(0.064) 0.091(0.089) 0.091(0.089) 0.000(0.000) 0.073(0.080) 0.073(0.080) 0.000(0.000)
16 0.218(0.145) 0.108(0.099) 0.110(0.113) 0.093(0.090) 0.093(0.090) 0.000(0.000) 0.100(0.098) 0.053(0.065) 0.047(0.075)
24 0.176(0.129) 0.106(0.096) 0.070(0.092) 0.177(0.134) 0.062(0.073) 0.115(0.116) 0.086(0.087) 0.071(0.077) 0.015(0.043)
32 0.204(0.141) 0.084(0.085) 0.120(0.119) 0.208(0.142) 0.097(0.091) 0.112(0.115) 0.124(0.115) 0.032(0.051) 0.092(0.105)
40 0.114(0.109) 0.046(0.063) 0.068(0.091) 0.177(0.135) 0.062(0.074) 0.115(0.116) 0.059(0.073) 0.044(0.060) 0.015(0.043)
48 0.265(0.154) 0.096(0.091) 0.169(0.132) 0.222(0.145) 0.092(0.089) 0.130(0.121) 0.173(0.133) 0.034(0.053) 0.139(0.125)
56 0.172(0.122) 0.172(0.122) 0.000(0.000) 0.197(0.128) 0.197(0.128) 0.000(0.000) 0.190(0.127) 0.190(0.127) 0.000(0.000)
64 0.196(0.130) 0.196(0.130) 0.000(0.000) 0.208(0.132) 0.208(0.132) 0.000(0.000) 0.201(0.129) 0.201(0.129) 0.000(0.000)
72 0.177(0.123) 0.177(0.123) 0.000(0.000) 0.202(0.131) 0.202(0.131) 0.000(0.000) 0.201(0.131) 0.192(0.127) 0.008(0.032)
80 0.154(0.113) 0.154(0.113) 0.000(0.000) 0.177(0.122) 0.177(0.122) 0.000(0.000) 0.185(0.125) 0.185(0.125) 0.000(0.000)
88 0.145(0.112) 0.145(0.112) 0.000(0.000) 0.157(0.116) 0.157(0.116) 0.000(0.000) 0.179(0.123) 0.177(0.122) 0.002(0.014)
96 0.191(0.127) 0.191(0.127) 0.000(0.000) 0.190(0.127) 0.190(0.127) 0.000(0.000) 0.187(0.126) 0.172(0.120) 0.015(0.043)

NCL mean

8 0.136(0.107) 0.136(0.107) 0.000(0.000) 0.129(0.103) 0.129(0.103) 0.000(0.000) 0.103(0.094) 0.103(0.094) 0.000(0.000)
16 0.155(0.116) 0.155(0.116) 0.000(0.000) 0.120(0.100) 0.120(0.100) 0.000(0.000) 0.098(0.092) 0.098(0.092) 0.000(0.000)
24 0.148(0.113) 0.148(0.113) 0.000(0.000) 0.119(0.099) 0.119(0.099) 0.000(0.000) 0.097(0.091) 0.097(0.091) 0.000(0.000)
32 0.142(0.110) 0.142(0.110) 0.000(0.000) 0.121(0.100) 0.121(0.100) 0.000(0.000) 0.074(0.080) 0.074(0.080) 0.000(0.000)
40 0.125(0.102) 0.125(0.102) 0.000(0.000) 0.095(0.090) 0.095(0.090) 0.000(0.000) 0.085(0.086) 0.085(0.086) 0.000(0.000)
48 0.139(0.109) 0.134(0.106) 0.005(0.025) 0.111(0.096) 0.111(0.096) 0.000(0.000) 0.082(0.085) 0.082(0.085) 0.000(0.000)
56 0.132(0.106) 0.127(0.103) 0.005(0.025) 0.101(0.093) 0.101(0.093) 0.000(0.000) 0.085(0.086) 0.085(0.086) 0.000(0.000)
64 0.156(0.117) 0.136(0.107) 0.020(0.050) 0.126(0.103) 0.126(0.103) 0.000(0.000) 0.087(0.087) 0.087(0.087) 0.000(0.000)
72 0.135(0.106) 0.135(0.106) 0.000(0.000) 0.106(0.095) 0.106(0.095) 0.000(0.000) 0.090(0.088) 0.090(0.088) 0.000(0.000)
80 0.119(0.099) 0.119(0.099) 0.000(0.000) 0.100(0.092) 0.100(0.092) 0.000(0.000) 0.088(0.088) 0.088(0.088) 0.000(0.000)
88 0.124(0.102) 0.119(0.099) 0.005(0.025) 0.113(0.097) 0.113(0.097) 0.000(0.000) 0.085(0.086) 0.085(0.086) 0.000(0.000)
96 0.124(0.102) 0.124(0.102) 0.000(0.000) 0.113(0.097) 0.113(0.097) 0.000(0.000) 0.085(0.086) 0.085(0.086) 0.000(0.000)

NCL Max

8 0.112(0.098) 0.107(0.095) 0.005(0.025) 0.078(0.081) 0.078(0.081) 0.000(0.000) 0.076(0.081) 0.076(0.081) 0.000(0.000)
16 0.173(0.128) 0.108(0.097) 0.065(0.089) 0.076(0.081) 0.076(0.081) 0.000(0.000) 0.107(0.103) 0.060(0.072) 0.047(0.075)
24 0.122(0.107) 0.090(0.088) 0.032(0.062) 0.078(0.086) 0.058(0.071) 0.020(0.050) 0.064(0.074) 0.064(0.074) 0.000(0.000)
32 0.180(0.134) 0.078(0.083) 0.102(0.110) 0.158(0.124) 0.088(0.088) 0.070(0.092) 0.135(0.120) 0.042(0.062) 0.093(0.105)
40 0.077(0.087) 0.050(0.067) 0.027(0.057) 0.161(0.129) 0.059(0.073) 0.102(0.110) 0.051(0.067) 0.051(0.067) 0.000(0.000)
48 0.215(0.143) 0.083(0.086) 0.132(0.120) 0.204(0.140) 0.089(0.088) 0.115(0.115) 0.158(0.129) 0.038(0.058) 0.120(0.118)
56 0.167(0.130) 0.043(0.063) 0.124(0.117) 0.164(0.130) 0.052(0.068) 0.112(0.114) 0.058(0.073) 0.053(0.068) 0.005(0.025)
64 0.191(0.139) 0.066(0.077) 0.125(0.119) 0.142(0.121) 0.061(0.074) 0.082(0.099) 0.183(0.135) 0.048(0.064) 0.134(0.122)
72 0.177(0.133) 0.050(0.067) 0.127(0.118) 0.158(0.127) 0.063(0.075) 0.095(0.106) 0.063(0.078) 0.042(0.060) 0.022(0.052)
80 0.103(0.106) 0.037(0.058) 0.067(0.090) 0.150(0.126) 0.047(0.065) 0.103(0.111) 0.128(0.116) 0.043(0.060) 0.085(0.101)
88 0.173(0.135) 0.047(0.065) 0.127(0.122) 0.132(0.119) 0.040(0.060) 0.092(0.105) 0.156(0.127) 0.047(0.063) 0.108(0.113)
96 0.138(0.119) 0.059(0.073) 0.078(0.097) 0.157(0.128) 0.052(0.068) 0.105(0.112) 0.159(0.128) 0.049(0.066) 0.111(0.113)

NCL Min

8 0.237(0.144) 0.237(0.144) 0.000(0.000) 0.223(0.140) 0.223(0.140) 0.000(0.000) 0.197(0.131) 0.197(0.131) 0.000(0.000)
16 0.260(0.150) 0.260(0.150) 0.000(0.000) 0.239(0.143) 0.239(0.143) 0.000(0.000) 0.214(0.137) 0.214(0.137) 0.000(0.000)
24 0.276(0.152) 0.276(0.152) 0.000(0.000) 0.259(0.150) 0.259(0.150) 0.000(0.000) 0.166(0.120) 0.166(0.120) 0.000(0.000)
32 0.271(0.152) 0.271(0.152) 0.000(0.000) 0.255(0.148) 0.255(0.148) 0.000(0.000) 0.206(0.135) 0.206(0.135) 0.000(0.000)
40 0.251(0.145) 0.251(0.145) 0.000(0.000) 0.268(0.151) 0.268(0.151) 0.000(0.000) 0.205(0.133) 0.205(0.133) 0.000(0.000)
48 0.292(0.155) 0.292(0.155) 0.000(0.000) 0.273(0.154) 0.273(0.154) 0.000(0.000) 0.223(0.139) 0.223(0.139) 0.000(0.000)
56 0.289(0.156) 0.289(0.156) 0.000(0.000) 0.266(0.151) 0.266(0.151) 0.000(0.000) 0.199(0.133) 0.199(0.133) 0.000(0.000)
64 0.276(0.153) 0.276(0.153) 0.000(0.000) 0.308(0.160) 0.308(0.160) 0.000(0.000) 0.199(0.133) 0.199(0.133) 0.000(0.000)
72 0.272(0.153) 0.272(0.153) 0.000(0.000) 0.281(0.154) 0.281(0.154) 0.000(0.000) 0.222(0.140) 0.222(0.140) 0.000(0.000)
80 0.327(0.164) 0.327(0.164) 0.000(0.000) 0.268(0.152) 0.268(0.152) 0.000(0.000) 0.212(0.136) 0.212(0.136) 0.000(0.000)
88 0.320(0.162) 0.320(0.162) 0.000(0.000) 0.287(0.157) 0.287(0.157) 0.000(0.000) 0.236(0.141) 0.236(0.141) 0.000(0.000)
96 0.259(0.151) 0.259(0.151) 0.000(0.000) 0.248(0.147) 0.248(0.147) 0.000(0.000) 0.285(0.155) 0.285(0.155) 0.000(0.000)

NCL Product

8 0.607(0.198) 0.607(0.198) 0.000(0.000) 0.607(0.198) 0.607(0.198) 0.000(0.000) 0.590(0.198) 0.590(0.198) 0.000(0.000)
16 0.744(0.210) 0.744(0.210) 0.000(0.000) 0.737(0.209) 0.737(0.209) 0.000(0.000) 0.705(0.207) 0.705(0.207) 0.000(0.000)
24 0.770(0.211) 0.770(0.211) 0.000(0.000) 0.768(0.211) 0.768(0.211) 0.000(0.000) 0.723(0.208) 0.723(0.208) 0.000(0.000)
32 0.796(0.212) 0.796(0.212) 0.000(0.000) 0.793(0.212) 0.793(0.212) 0.000(0.000) 0.788(0.212) 0.788(0.212) 0.000(0.000)
40 0.813(0.213) 0.813(0.213) 0.000(0.000) 0.799(0.212) 0.799(0.212) 0.000(0.000) 0.793(0.212) 0.793(0.212) 0.000(0.000)
48 0.823(0.213) 0.823(0.213) 0.000(0.000) 0.823(0.213) 0.823(0.213) 0.000(0.000) 0.810(0.213) 0.810(0.213) 0.000(0.000)
56 0.817(0.213) 0.817(0.213) 0.000(0.000) 0.828(0.213) 0.828(0.213) 0.000(0.000) 0.834(0.214) 0.834(0.214) 0.000(0.000)
64 0.837(0.214) 0.837(0.214) 0.000(0.000) 0.837(0.214) 0.837(0.214) 0.000(0.000) 0.839(0.214) 0.839(0.214) 0.000(0.000)
72 0.842(0.214) 0.842(0.214) 0.000(0.000) 0.847(0.214) 0.847(0.214) 0.000(0.000) 0.843(0.214) 0.843(0.214) 0.000(0.000)
80 0.866(0.214) 0.866(0.214) 0.000(0.000) 0.853(0.214) 0.853(0.214) 0.000(0.000) 0.850(0.214) 0.850(0.214) 0.000(0.000)
88 0.866(0.214) 0.866(0.214) 0.000(0.000) 0.876(0.214) 0.876(0.214) 0.000(0.000) 0.858(0.214) 0.858(0.214) 0.000(0.000)
96 0.866(0.214) 0.866(0.214) 0.000(0.000) 0.867(0.214) 0.867(0.214) 0.000(0.000) 0.866(0.214) 0.866(0.214) 0.000(0.000)

NCL Median

8 0.159(0.117) 0.159(0.117) 0.000(0.000) 0.145(0.111) 0.145(0.111) 0.000(0.000) 0.101(0.093) 0.101(0.093) 0.000(0.000)
16 0.173(0.124) 0.173(0.124) 0.000(0.000) 0.155(0.116) 0.155(0.116) 0.000(0.000) 0.128(0.103) 0.128(0.103) 0.000(0.000)
24 0.170(0.123) 0.170(0.123) 0.000(0.000) 0.158(0.117) 0.158(0.117) 0.000(0.000) 0.083(0.086) 0.083(0.086) 0.000(0.000)
32 0.163(0.119) 0.163(0.119) 0.000(0.000) 0.134(0.106) 0.134(0.106) 0.000(0.000) 0.087(0.087) 0.087(0.087) 0.000(0.000)
40 0.151(0.114) 0.151(0.114) 0.000(0.000) 0.120(0.100) 0.120(0.100) 0.000(0.000) 0.101(0.093) 0.101(0.093) 0.000(0.000)
48 0.132(0.106) 0.132(0.106) 0.000(0.000) 0.131(0.105) 0.131(0.105) 0.000(0.000) 0.104(0.094) 0.104(0.094) 0.000(0.000)
56 0.172(0.123) 0.172(0.123) 0.000(0.000) 0.130(0.105) 0.130(0.105) 0.000(0.000) 0.099(0.092) 0.099(0.092) 0.000(0.000)
64 0.157(0.117) 0.157(0.117) 0.000(0.000) 0.136(0.107) 0.136(0.107) 0.000(0.000) 0.096(0.091) 0.096(0.091) 0.000(0.000)
72 0.162(0.119) 0.162(0.119) 0.000(0.000) 0.131(0.105) 0.131(0.105) 0.000(0.000) 0.095(0.090) 0.095(0.090) 0.000(0.000)
80 0.097(0.091) 0.097(0.091) 0.000(0.000) 0.121(0.101) 0.121(0.101) 0.000(0.000) 0.149(0.113) 0.149(0.113) 0.000(0.000)
88 0.157(0.117) 0.157(0.117) 0.000(0.000) 0.134(0.106) 0.134(0.106) 0.000(0.000) 0.091(0.089) 0.091(0.089) 0.000(0.000)
96 0.131(0.105) 0.131(0.105) 0.000(0.000) 0.119(0.101) 0.119(0.101) 0.000(0.000) 0.093(0.090) 0.093(0.090) 0.000(0.000)
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3.2. Results and discussion

Figure 3.4: Influence of the concentration of the analytes in the mixture over the average of the errors for the
NCL method with 40 members, Max combination rule and λ = 1.0: (a) FB, (b) TBZ and (c) MBC-BM. (d)
Influence of the number of classes from the mixture in the average of the errors of the mixtures. (e) ROC curve.
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3. Analysis of generating diversity methods in the design of intelligent systems for BFs
detection in complex mixtures

In the table 3.4 we compare different combinations rules in the random subspace method. Is is interesting
to see how the mean rule with the best members achieved the best results, specifically less than the half of the
SMV scheme. The median method obtain better results than SMV combining the outputs of the most diverse
members with the Q diversity. The product rule produced the worst results, because of the presence of members
with a value near to zero, cancelling the ensemble output. It could be an interesting rule when the reduction of
FP is an objective. The min rule produces similar consequences to the product rule, increasing the FN error.
The WMV scheme couldn’t improve the SMV results even with the best members. As in all the other cases,
we can observe in the figures 3.5 (a, b, c and d) that the main component of the errors were produced in low
concentrations of the fungicides classes, specially in mixtures with more than 2 classes. In the figure 3.5(e)
we showed the ROC curve of the best ensemble founded in the table 3.4, where it is possible to see that the
problems are mainly produced by the TBZ and FB classes. The RS achieved good results but far from the
stability founded in the NCL method results. Although the best members have provided a better result in the
RS with the mean rule, we first generated diversity among members that get good use of their combination.
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3.2. Results and discussion

Table 3.4: Average mixture errors of identification values and their standard deviation between parentheses
using neural ensembles with Random subspaces diversity creation methods and diversity measures with some
combination rules.

DF Dis p Q Best
Members E EFN EFP E EFN EFP E EFN EFP E EFN EFP E EFN EFP

RS SMV

8 0.398(0.175) 0.398(0.175) 0.000(0.000) 0.403(0.174) 0.403(0.174) 0.000(0.000) 0.278(0.180) 0.178(0.124) 0.100(0.139) 0.162(0.116) 0.162(0.116) 0.000(0.000) 0.425(0.180) 0.425(0.180) 0.000(0.000)
16 0.408(0.177) 0.408(0.177) 0.000(0.000) 0.279(0.150) 0.279(0.150) 0.000(0.000) 0.329(0.190) 0.226(0.140) 0.103(0.140) 0.232(0.142) 0.232(0.142) 0.000(0.000) 0.440(0.182) 0.440(0.182) 0.000(0.000)
24 0.394(0.174) 0.394(0.174) 0.000(0.000) 0.266(0.148) 0.266(0.148) 0.000(0.000) 0.306(0.184) 0.233(0.142) 0.073(0.126) 0.237(0.143) 0.236(0.142) 0.002(0.014) 0.407(0.176) 0.407(0.176) 0.000(0.000)
32 0.389(0.173) 0.389(0.173) 0.000(0.000) 0.266(0.147) 0.266(0.147) 0.000(0.000) 0.267(0.167) 0.230(0.141) 0.037(0.095) 0.229(0.140) 0.229(0.140) 0.000(0.000) 0.357(0.166) 0.357(0.166) 0.000(0.000)
40 0.355(0.166) 0.355(0.166) 0.000(0.000) 0.279(0.149) 0.279(0.149) 0.000(0.000) 0.224(0.139) 0.224(0.139) 0.000(0.000) 0.224(0.139) 0.224(0.139) 0.000(0.000) 0.351(0.166) 0.351(0.166) 0.000(0.000)
48 0.372(0.169) 0.372(0.169) 0.000(0.000) 0.239(0.140) 0.239(0.140) 0.000(0.000) 0.198(0.131) 0.198(0.131) 0.000(0.000) 0.211(0.134) 0.211(0.134) 0.000(0.000) 0.348(0.165) 0.348(0.165) 0.000(0.000)
56 0.376(0.170) 0.376(0.170) 0.000(0.000) 0.236(0.140) 0.236(0.140) 0.000(0.000) 0.203(0.132) 0.203(0.132) 0.000(0.000) 0.204(0.132) 0.204(0.132) 0.000(0.000) 0.356(0.166) 0.356(0.166) 0.000(0.000)
64 0.405(0.175) 0.405(0.175) 0.000(0.000) 0.218(0.136) 0.218(0.136) 0.000(0.000) 0.210(0.134) 0.210(0.134) 0.000(0.000) 0.203(0.132) 0.203(0.132) 0.000(0.000) 0.368(0.168) 0.368(0.168) 0.000(0.000)
72 0.404(0.175) 0.404(0.175) 0.000(0.000) 0.238(0.140) 0.238(0.140) 0.000(0.000) 0.210(0.134) 0.210(0.134) 0.000(0.000) 0.203(0.132) 0.203(0.132) 0.000(0.000) 0.369(0.168) 0.369(0.168) 0.000(0.000)
80 0.400(0.174) 0.400(0.174) 0.000(0.000) 0.262(0.145) 0.262(0.145) 0.000(0.000) 0.211(0.134) 0.211(0.134) 0.000(0.000) 0.212(0.134) 0.212(0.134) 0.000(0.000) 0.365(0.168) 0.365(0.168) 0.000(0.000)
88 0.394(0.173) 0.394(0.173) 0.000(0.000) 0.255(0.143) 0.255(0.143) 0.000(0.000) 0.219(0.136) 0.219(0.136) 0.000(0.000) 0.210(0.134) 0.210(0.134) 0.000(0.000) 0.365(0.168) 0.365(0.168) 0.000(0.000)
96 0.381(0.170) 0.381(0.170) 0.000(0.000) 0.250(0.143) 0.250(0.143) 0.000(0.000) 0.212(0.134) 0.212(0.134) 0.000(0.000) 0.213(0.134) 0.213(0.134) 0.000(0.000) 0.360(0.168) 0.360(0.168) 0.000(0.000)

RS WMV

8 0.346(0.179) 0.050(0.067) 0.296(0.171) 0.377(0.180) 0.107(0.095) 0.271(0.165) 0.726(0.263) 0.010(0.033) 0.716(0.263) 0.651(0.262) 0.010(0.033) 0.641(0.262) 0.383(0.185) 0.103(0.099) 0.281(0.167)
16 0.349(0.184) 0.010(0.029) 0.339(0.183) 0.699(0.256) 0.035(0.055) 0.664(0.256) 0.789(0.272) 0.010(0.033) 0.779(0.272) 0.791(0.272) 0.010(0.033) 0.781(0.272) 0.388(0.195) 0.008(0.025) 0.381(0.194)
24 0.593(0.221) 0.000(0.000) 0.593(0.221) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.837(0.273) 0.010(0.033) 0.827(0.273) 0.837(0.273) 0.000(0.000) 0.837(0.273) 0.387(0.196) 0.000(0.000) 0.387(0.196)
32 0.608(0.223) 0.000(0.000) 0.608(0.223) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.837(0.273) 0.000(0.000) 0.837(0.273) 0.838(0.273) 0.000(0.000) 0.838(0.273) 0.598(0.223) 0.000(0.000) 0.598(0.223)
40 0.608(0.223) 0.000(0.000) 0.608(0.223) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.845(0.275) 0.000(0.000) 0.845(0.275) 0.838(0.273) 0.000(0.000) 0.838(0.273) 0.620(0.227) 0.000(0.000) 0.620(0.227)
48 0.610(0.223) 0.000(0.000) 0.610(0.223) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.620(0.227) 0.000(0.000) 0.620(0.227)
56 0.640(0.226) 0.000(0.000) 0.640(0.226) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.620(0.227) 0.000(0.000) 0.620(0.227)
64 0.643(0.227) 0.000(0.000) 0.643(0.227) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.633(0.232) 0.000(0.000) 0.633(0.232)
72 0.661(0.230) 0.000(0.000) 0.661(0.230) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.640(0.233) 0.000(0.000) 0.640(0.233)
80 0.687(0.239) 0.000(0.000) 0.687(0.239) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.660(0.240) 0.000(0.000) 0.660(0.240)
88 0.692(0.240) 0.000(0.000) 0.692(0.240) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.661(0.241) 0.000(0.000) 0.661(0.241)
96 0.699(0.242) 0.000(0.000) 0.699(0.242) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.865(0.280) 0.000(0.000) 0.865(0.280) 0.710(0.245) 0.000(0.000) 0.710(0.245)

RS mean

8 0.243(0.154) 0.127(0.109) 0.117(0.117) 0.390(0.174) 0.259(0.144) 0.131(0.117) 0.362(0.179) 0.126(0.105) 0.235(0.157) 0.344(0.168) 0.199(0.126) 0.146(0.126) 0.263(0.158) 0.153(0.119) 0.110(0.114)
16 0.157(0.121) 0.099(0.091) 0.058(0.084) 0.257(0.154) 0.145(0.112) 0.112(0.115) 0.598(0.217) 0.109(0.103) 0.489(0.208) 0.655(0.220) 0.167(0.125) 0.488(0.208) 0.134(0.105) 0.132(0.104) 0.002(0.014)
24 0.090(0.088) 0.088(0.087) 0.002(0.014) 0.266(0.157) 0.111(0.098) 0.155(0.132) 0.708(0.221) 0.210(0.138) 0.498(0.207) 0.661(0.219) 0.154(0.120) 0.507(0.208) 0.085(0.085) 0.085(0.085) 0.000(0.000)
32 0.129(0.108) 0.121(0.103) 0.008(0.032) 0.285(0.158) 0.114(0.099) 0.172(0.133) 0.607(0.215) 0.124(0.108) 0.483(0.205) 0.581(0.213) 0.092(0.093) 0.489(0.206) 0.068(0.077) 0.068(0.077) 0.000(0.000)
40 0.150(0.118) 0.123(0.105) 0.027(0.057) 0.299(0.164) 0.121(0.104) 0.177(0.136) 0.577(0.212) 0.103(0.099) 0.475(0.204) 0.553(0.210) 0.095(0.095) 0.458(0.201) 0.073(0.080) 0.068(0.077) 0.005(0.025)
48 0.153(0.118) 0.141(0.113) 0.012(0.038) 0.247(0.152) 0.118(0.103) 0.128(0.120) 0.415(0.186) 0.106(0.097) 0.309(0.172) 0.417(0.187) 0.102(0.096) 0.315(0.173) 0.070(0.078) 0.066(0.076) 0.003(0.020)
56 0.171(0.124) 0.156(0.117) 0.015(0.043) 0.241(0.150) 0.105(0.097) 0.136(0.122) 0.461(0.196) 0.098(0.094) 0.364(0.185) 0.461(0.196) 0.098(0.095) 0.363(0.184) 0.072(0.078) 0.072(0.078) 0.000(0.000)
64 0.191(0.132) 0.156(0.117) 0.035(0.066) 0.226(0.147) 0.098(0.094) 0.128(0.120) 0.420(0.192) 0.084(0.088) 0.336(0.181) 0.431(0.193) 0.088(0.091) 0.343(0.181) 0.082(0.084) 0.082(0.084) 0.000(0.000)
72 0.170(0.124) 0.146(0.113) 0.023(0.054) 0.208(0.142) 0.094(0.092) 0.113(0.113) 0.392(0.188) 0.078(0.086) 0.314(0.177) 0.415(0.193) 0.079(0.087) 0.336(0.182) 0.085(0.085) 0.085(0.085) 0.000(0.000)
80 0.153(0.118) 0.133(0.109) 0.020(0.050) 0.219(0.146) 0.084(0.089) 0.135(0.122) 0.407(0.190) 0.076(0.085) 0.331(0.179) 0.429(0.194) 0.067(0.080) 0.361(0.185) 0.088(0.088) 0.083(0.084) 0.005(0.025)
88 0.141(0.113) 0.124(0.105) 0.017(0.045) 0.205(0.142) 0.071(0.081) 0.134(0.122) 0.397(0.190) 0.068(0.081) 0.329(0.180) 0.421(0.194) 0.075(0.085) 0.346(0.183) 0.078(0.082) 0.078(0.082) 0.000(0.000)
96 0.130(0.108) 0.118(0.102) 0.012(0.038) 0.262(0.151) 0.084(0.086) 0.178(0.131) 0.414(0.190) 0.077(0.085) 0.337(0.179) 0.397(0.191) 0.063(0.078) 0.334(0.182) 0.072(0.079) 0.068(0.077) 0.003(0.020)

RS Max

8 0.259(0.160) 0.126(0.111) 0.133(0.125) 0.518(0.198) 0.211(0.135) 0.307(0.170) 0.531(0.209) 0.110(0.106) 0.421(0.195) 0.525(0.201) 0.189(0.130) 0.334(0.177) 0.278(0.163) 0.155(0.121) 0.123(0.120)
16 0.212(0.144) 0.089(0.088) 0.123(0.120) 0.700(0.213) 0.388(0.177) 0.312(0.172) 0.921(0.230) 0.357(0.178) 0.565(0.216) 0.693(0.228) 0.110(0.106) 0.583(0.221) 0.182(0.133) 0.090(0.088) 0.092(0.105)
24 0.357(0.174) 0.091(0.090) 0.266(0.159) 0.746(0.223) 0.329(0.171) 0.417(0.195) 0.697(0.222) 0.160(0.122) 0.536(0.212) 0.680(0.227) 0.074(0.089) 0.606(0.222) 0.176(0.131) 0.085(0.085) 0.092(0.105)
32 0.489(0.195) 0.272(0.153) 0.217(0.148) 0.721(0.222) 0.299(0.164) 0.421(0.195) 0.679(0.222) 0.118(0.106) 0.560(0.215) 0.680(0.228) 0.050(0.074) 0.630(0.224) 0.346(0.172) 0.080(0.083) 0.266(0.159)
40 0.482(0.194) 0.266(0.152) 0.215(0.148) 0.701(0.212) 0.391(0.176) 0.310(0.171) 0.680(0.222) 0.118(0.106) 0.561(0.216) 0.669(0.225) 0.084(0.093) 0.585(0.219) 0.356(0.175) 0.080(0.083) 0.276(0.162)
48 0.459(0.192) 0.246(0.148) 0.214(0.147) 0.709(0.219) 0.322(0.167) 0.386(0.188) 0.665(0.225) 0.084(0.093) 0.581(0.219) 0.664(0.225) 0.083(0.093) 0.581(0.219) 0.342(0.174) 0.061(0.074) 0.281(0.164)
56 0.532(0.208) 0.196(0.137) 0.336(0.181) 0.696(0.218) 0.310(0.164) 0.386(0.188) 0.664(0.225) 0.083(0.093) 0.581(0.219) 0.664(0.225) 0.083(0.093) 0.581(0.219) 0.342(0.174) 0.061(0.074) 0.281(0.164)
64 0.571(0.209) 0.198(0.137) 0.373(0.185) 0.695(0.218) 0.309(0.164) 0.386(0.188) 0.658(0.225) 0.077(0.089) 0.581(0.219) 0.663(0.225) 0.081(0.092) 0.581(0.219) 0.358(0.177) 0.061(0.074) 0.296(0.168)
72 0.573(0.210) 0.195(0.136) 0.378(0.186) 0.679(0.216) 0.292(0.159) 0.386(0.188) 0.655(0.225) 0.073(0.088) 0.581(0.219) 0.659(0.225) 0.078(0.090) 0.581(0.219) 0.375(0.181) 0.061(0.074) 0.314(0.172)
80 0.573(0.210) 0.195(0.136) 0.378(0.186) 0.752(0.222) 0.290(0.159) 0.462(0.202) 0.649(0.225) 0.068(0.085) 0.581(0.219) 0.653(0.225) 0.072(0.087) 0.581(0.219) 0.389(0.184) 0.062(0.075) 0.327(0.176)
88 0.563(0.208) 0.185(0.132) 0.378(0.186) 0.780(0.224) 0.279(0.157) 0.501(0.207) 0.649(0.225) 0.068(0.085) 0.581(0.219) 0.653(0.225) 0.072(0.087) 0.581(0.219) 0.394(0.185) 0.070(0.081) 0.325(0.175)
96 0.579(0.210) 0.206(0.140) 0.373(0.185) 0.673(0.222) 0.141(0.120) 0.532(0.211) 0.651(0.226) 0.057(0.080) 0.595(0.221) 0.667(0.226) 0.106(0.106) 0.562(0.218) 0.413(0.192) 0.037(0.063) 0.376(0.187)

RS Min

8 0.659(0.206) 0.659(0.206) 0.000(0.000) 0.548(0.194) 0.548(0.194) 0.000(0.000) 0.809(0.213) 0.809(0.213) 0.000(0.000) 0.784(0.213) 0.784(0.213) 0.000(0.000) 0.627(0.204) 0.627(0.204) 0.000(0.000)
16 0.673(0.206) 0.673(0.206) 0.000(0.000) 0.677(0.207) 0.677(0.207) 0.000(0.000) 0.813(0.214) 0.813(0.214) 0.000(0.000) 0.843(0.215) 0.843(0.215) 0.000(0.000) 0.678(0.207) 0.678(0.207) 0.000(0.000)
24 0.791(0.213) 0.791(0.213) 0.000(0.000) 0.794(0.212) 0.794(0.212) 0.000(0.000) 0.855(0.215) 0.855(0.215) 0.000(0.000) 0.855(0.215) 0.855(0.215) 0.000(0.000) 0.787(0.213) 0.787(0.213) 0.000(0.000)
32 0.805(0.213) 0.805(0.213) 0.000(0.000) 0.834(0.214) 0.834(0.214) 0.000(0.000) 0.887(0.214) 0.887(0.214) 0.000(0.000) 0.887(0.214) 0.887(0.214) 0.000(0.000) 0.796(0.213) 0.796(0.213) 0.000(0.000)
40 0.810(0.214) 0.810(0.214) 0.000(0.000) 0.840(0.214) 0.840(0.214) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.809(0.213) 0.809(0.213) 0.000(0.000)
48 0.815(0.214) 0.815(0.214) 0.000(0.000) 0.843(0.214) 0.843(0.214) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.809(0.213) 0.809(0.213) 0.000(0.000)
56 0.834(0.215) 0.834(0.215) 0.000(0.000) 0.845(0.214) 0.845(0.214) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.809(0.213) 0.809(0.213) 0.000(0.000)
64 0.839(0.215) 0.839(0.215) 0.000(0.000) 0.872(0.214) 0.872(0.214) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.809(0.213) 0.809(0.213) 0.000(0.000)
72 0.849(0.215) 0.849(0.215) 0.000(0.000) 0.872(0.214) 0.872(0.214) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.812(0.213) 0.812(0.213) 0.000(0.000)
80 0.849(0.215) 0.849(0.215) 0.000(0.000) 0.877(0.214) 0.877(0.214) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.812(0.213) 0.812(0.213) 0.000(0.000)
88 0.849(0.215) 0.849(0.215) 0.000(0.000) 0.887(0.214) 0.887(0.214) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.815(0.213) 0.815(0.213) 0.000(0.000)
96 0.852(0.215) 0.852(0.215) 0.000(0.000) 0.896(0.215) 0.896(0.215) 0.000(0.000) 0.897(0.215) 0.897(0.215) 0.000(0.000) 0.894(0.215) 0.894(0.215) 0.000(0.000) 0.818(0.214) 0.818(0.214) 0.000(0.000)

RS Product

8 0.839(0.214) 0.839(0.214) 0.000(0.000) 0.835(0.214) 0.835(0.214) 0.000(0.000) 0.889(0.215) 0.889(0.215) 0.000(0.000) 0.877(0.214) 0.877(0.214) 0.000(0.000) 0.848(0.214) 0.848(0.214) 0.000(0.000)
16 0.882(0.215) 0.882(0.215) 0.000(0.000) 0.893(0.215) 0.893(0.215) 0.000(0.000) 0.899(0.215) 0.899(0.215) 0.000(0.000) 0.907(0.215) 0.907(0.215) 0.000(0.000) 0.885(0.215) 0.885(0.215) 0.000(0.000)
24 0.913(0.215) 0.913(0.215) 0.000(0.000) 0.926(0.215) 0.926(0.215) 0.000(0.000) 0.912(0.215) 0.912(0.215) 0.000(0.000) 0.912(0.215) 0.912(0.215) 0.000(0.000) 0.913(0.215) 0.913(0.215) 0.000(0.000)
32 0.919(0.215) 0.919(0.215) 0.000(0.000) 0.926(0.215) 0.926(0.215) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.916(0.215) 0.916(0.215) 0.000(0.000)
40 0.926(0.215) 0.926(0.215) 0.000(0.000) 0.926(0.215) 0.926(0.215) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.921(0.215) 0.921(0.215) 0.000(0.000)
48 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.926(0.215) 0.926(0.215) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.926(0.215) 0.926(0.215) 0.000(0.000)
56 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.929(0.215) 0.929(0.215) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.928(0.215) 0.928(0.215) 0.000(0.000)
64 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000)
72 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000)
80 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000)
88 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000)
96 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000)

RS Median

8 0.386(0.173) 0.386(0.173) 0.000(0.000) 0.359(0.165) 0.359(0.165) 0.000(0.000) 0.132(0.106) 0.132(0.106) 0.000(0.000) 0.184(0.126) 0.184(0.126) 0.000(0.000) 0.411(0.176) 0.411(0.176) 0.000(0.000)
16 0.375(0.172) 0.375(0.172) 0.000(0.000) 0.192(0.129) 0.192(0.129) 0.000(0.000) 0.202(0.135) 0.202(0.135) 0.000(0.000) 0.254(0.148) 0.254(0.148) 0.000(0.000) 0.399(0.176) 0.399(0.176) 0.000(0.000)
24 0.382(0.173) 0.382(0.173) 0.000(0.000) 0.188(0.128) 0.188(0.128) 0.000(0.000) 0.203(0.134) 0.203(0.134) 0.000(0.000) 0.171(0.124) 0.171(0.124) 0.000(0.000) 0.386(0.173) 0.386(0.173) 0.000(0.000)
32 0.315(0.160) 0.315(0.160) 0.000(0.000) 0.164(0.115) 0.164(0.115) 0.000(0.000) 0.160(0.119) 0.160(0.119) 0.000(0.000) 0.156(0.118) 0.156(0.118) 0.000(0.000) 0.351(0.167) 0.351(0.167) 0.000(0.000)
40 0.275(0.151) 0.275(0.151) 0.000(0.000) 0.189(0.123) 0.189(0.123) 0.000(0.000) 0.145(0.114) 0.145(0.114) 0.000(0.000) 0.154(0.117) 0.154(0.117) 0.000(0.000) 0.311(0.159) 0.311(0.159) 0.000(0.000)
48 0.285(0.153) 0.285(0.153) 0.000(0.000) 0.140(0.109) 0.140(0.109) 0.000(0.000) 0.130(0.106) 0.130(0.106) 0.000(0.000) 0.145(0.114) 0.145(0.114) 0.000(0.000) 0.300(0.156) 0.300(0.156) 0.000(0.000)
56 0.284(0.153) 0.284(0.153) 0.000(0.000) 0.138(0.109) 0.138(0.109) 0.000(0.000) 0.142(0.110) 0.142(0.110) 0.000(0.000) 0.129(0.106) 0.129(0.106) 0.000(0.000) 0.316(0.160) 0.316(0.160) 0.000(0.000)
64 0.297(0.156) 0.297(0.156) 0.000(0.000) 0.137(0.108) 0.137(0.108) 0.000(0.000) 0.147(0.112) 0.147(0.112) 0.000(0.000) 0.131(0.106) 0.131(0.106) 0.000(0.000) 0.320(0.161) 0.320(0.161) 0.000(0.000)
72 0.298(0.155) 0.298(0.155) 0.000(0.000) 0.151(0.113) 0.151(0.113) 0.000(0.000) 0.143(0.111) 0.143(0.111) 0.000(0.000) 0.129(0.106) 0.129(0.106) 0.000(0.000) 0.328(0.163) 0.328(0.163) 0.000(0.000)
80 0.291(0.154) 0.291(0.154) 0.000(0.000) 0.178(0.123) 0.178(0.123) 0.000(0.000) 0.144(0.111) 0.144(0.111) 0.000(0.000) 0.135(0.108) 0.135(0.108) 0.000(0.000) 0.310(0.159) 0.310(0.159) 0.000(0.000)
88 0.301(0.156) 0.301(0.156) 0.000(0.000) 0.179(0.123) 0.179(0.123) 0.000(0.000) 0.151(0.113) 0.151(0.113) 0.000(0.000) 0.145(0.112) 0.145(0.112) 0.000(0.000) 0.321(0.161) 0.321(0.161) 0.000(0.000)
96 0.285(0.152) 0.285(0.152) 0.000(0.000) 0.176(0.122) 0.176(0.122) 0.000(0.000) 0.151(0.113) 0.151(0.113) 0.000(0.000) 0.148(0.113) 0.148(0.113) 0.000(0.000) 0.302(0.156) 0.302(0.156) 0.000(0.000)
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3. Analysis of generating diversity methods in the design of intelligent systems for BFs
detection in complex mixtures

Figure 3.5: Influence of the concentration of the analytes in the mixture over the average of the errors for the
RS method with 32 members and mean combination rule: (a) FB, (b) TBZ and (c) MBC-BM. (d) Influence of
the number of classes from the mixture in the average of the errors of the mixtures. (e) ROC curve.
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3.2. Results and discussion

In the table 3.5 we present a comparison for the Bgg method of different combination rules for ensembles
whose members was selected with different diversity measures. We also showed the influence of the number
of members. In this method, the DF measure obtained the best results for three different combination rules, the
SMV, the Mean and the Median. The ensemble with 24 members selected by the DF diversity measure and
combined by a Median rule achieved the best results with an error of E = 0.081. This method allowed us to
find combinations of members that are able to reduce the EFN to 0.0. The combination rules that able that
possibility are the WMV and the Max rules, specially the WMV, because it reduces also the EFP. The figures
3.6 show the influence of the concentration in the error, the influence of the number of classes in the mixture
and ROC curve of the best ensemble generated in the table 3.5. Again, the error is mainly produced by low
concentrations of the different classes, specially FB and TBZ, with an increase of the error in mixtures of three
classes.
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3. Analysis of generating diversity methods in the design of intelligent systems for BFs
detection in complex mixtures

Table 3.5: Average mixture errors of identification values and their standard deviation between parentheses
using neural ensembles with Bagging diversity creation method and diversity measures with some combination
rules.

DF Dis p Q Best
Members E EFN EFP E EFN EFP E EFN EFP E EFN EFP E EFN EFP

Bgg SMV

8 0.297(0.158) 0.267(0.149) 0.030(0.061) 0.308(0.159) 0.278(0.151) 0.030(0.061) 0.303(0.159) 0.273(0.150) 0.030(0.061) 0.296(0.157) 0.266(0.149) 0.030(0.061) 0.279(0.153) 0.249(0.144) 0.030(0.061)
16 0.270(0.151) 0.240(0.141) 0.030(0.061) 0.261(0.150) 0.231(0.140) 0.030(0.061) 0.267(0.150) 0.237(0.141) 0.030(0.061) 0.298(0.158) 0.268(0.149) 0.030(0.061) 0.260(0.149) 0.230(0.139) 0.030(0.061)
24 0.273(0.152) 0.243(0.143) 0.030(0.061) 0.268(0.152) 0.238(0.142) 0.030(0.061) 0.288(0.155) 0.258(0.146) 0.030(0.061) 0.280(0.153) 0.250(0.144) 0.030(0.061) 0.280(0.153) 0.250(0.144) 0.030(0.061)
32 0.286(0.154) 0.256(0.145) 0.030(0.061) 0.292(0.156) 0.262(0.147) 0.030(0.061) 0.263(0.149) 0.233(0.139) 0.030(0.061) 0.266(0.149) 0.236(0.140) 0.030(0.061) 0.286(0.154) 0.256(0.145) 0.030(0.061)
40 0.273(0.153) 0.243(0.143) 0.030(0.061) 0.307(0.160) 0.277(0.151) 0.030(0.061) 0.264(0.149) 0.234(0.139) 0.030(0.061) 0.262(0.148) 0.232(0.139) 0.030(0.061) 0.287(0.155) 0.257(0.146) 0.030(0.061)
48 0.257(0.149) 0.227(0.139) 0.030(0.061) 0.292(0.156) 0.262(0.147) 0.030(0.061) 0.261(0.148) 0.231(0.138) 0.030(0.061) 0.261(0.148) 0.231(0.138) 0.030(0.061) 0.283(0.154) 0.253(0.145) 0.030(0.061)
56 0.263(0.150) 0.233(0.141) 0.030(0.061) 0.300(0.158) 0.270(0.149) 0.030(0.061) 0.268(0.150) 0.238(0.141) 0.030(0.061) 0.259(0.148) 0.229(0.138) 0.030(0.061) 0.280(0.153) 0.250(0.144) 0.030(0.061)
64 0.280(0.154) 0.250(0.144) 0.030(0.061) 0.303(0.158) 0.273(0.150) 0.030(0.061) 0.256(0.147) 0.226(0.137) 0.030(0.061) 0.258(0.147) 0.228(0.137) 0.030(0.061) 0.279(0.153) 0.249(0.144) 0.030(0.061)
72 0.286(0.155) 0.256(0.146) 0.030(0.061) 0.307(0.159) 0.277(0.151) 0.030(0.061) 0.258(0.147) 0.228(0.137) 0.030(0.061) 0.254(0.146) 0.224(0.136) 0.030(0.061) 0.279(0.153) 0.249(0.144) 0.030(0.061)
80 0.281(0.154) 0.251(0.145) 0.030(0.061) 0.304(0.159) 0.274(0.150) 0.030(0.061) 0.261(0.148) 0.231(0.138) 0.030(0.061) 0.254(0.146) 0.224(0.136) 0.030(0.061) 0.279(0.153) 0.249(0.144) 0.030(0.061)
88 0.278(0.153) 0.248(0.144) 0.030(0.061) 0.310(0.160) 0.280(0.152) 0.030(0.061) 0.261(0.148) 0.231(0.138) 0.030(0.061) 0.261(0.148) 0.231(0.138) 0.030(0.061) 0.278(0.153) 0.248(0.143) 0.030(0.061)
96 0.279(0.153) 0.249(0.144) 0.030(0.061) 0.303(0.158) 0.273(0.150) 0.030(0.061) 0.264(0.148) 0.234(0.139) 0.030(0.061) 0.265(0.149) 0.235(0.139) 0.030(0.061) 0.276(0.152) 0.246(0.143) 0.030(0.061)

Bgg WMV

8 0.153(0.125) 0.093(0.093) 0.060(0.088) 0.155(0.126) 0.058(0.072) 0.097(0.107) 0.112(0.108) 0.057(0.070) 0.055(0.084) 0.166(0.136) 0.058(0.071) 0.108(0.120) 0.185(0.144) 0.064(0.076) 0.122(0.126)
16 0.132(0.129) 0.010(0.029) 0.122(0.126) 0.161(0.131) 0.035(0.056) 0.126(0.121) 0.278(0.188) 0.018(0.038) 0.261(0.186) 0.278(0.188) 0.018(0.038) 0.261(0.186) 0.187(0.145) 0.064(0.076) 0.123(0.127)
24 0.132(0.131) 0.000(0.000) 0.132(0.131) 0.181(0.139) 0.034(0.056) 0.147(0.130) 0.283(0.189) 0.018(0.038) 0.266(0.187) 0.290(0.193) 0.018(0.038) 0.272(0.191) 0.137(0.133) 0.000(0.000) 0.137(0.133)
32 0.207(0.158) 0.000(0.000) 0.207(0.158) 0.181(0.139) 0.034(0.056) 0.147(0.130) 0.441(0.220) 0.012(0.032) 0.429(0.220) 0.433(0.215) 0.013(0.033) 0.420(0.214) 0.137(0.133) 0.000(0.000) 0.137(0.133)
40 0.207(0.158) 0.000(0.000) 0.207(0.158) 0.186(0.141) 0.034(0.056) 0.152(0.132) 0.580(0.248) 0.012(0.032) 0.568(0.247) 0.580(0.248) 0.012(0.032) 0.568(0.247) 0.140(0.134) 0.000(0.000) 0.140(0.134)
48 0.213(0.160) 0.000(0.000) 0.213(0.160) 0.222(0.156) 0.032(0.054) 0.191(0.149) 0.599(0.249) 0.012(0.032) 0.586(0.249) 0.599(0.249) 0.012(0.032) 0.586(0.249) 0.140(0.134) 0.000(0.000) 0.140(0.134)
56 0.242(0.168) 0.000(0.000) 0.242(0.168) 0.219(0.156) 0.026(0.050) 0.192(0.150) 0.686(0.256) 0.012(0.032) 0.674(0.256) 0.652(0.254) 0.010(0.029) 0.642(0.254) 0.140(0.134) 0.000(0.000) 0.140(0.134)
64 0.250(0.170) 0.000(0.000) 0.250(0.170) 0.198(0.152) 0.001(0.010) 0.197(0.152) 0.707(0.258) 0.010(0.029) 0.697(0.258) 0.675(0.255) 0.010(0.029) 0.665(0.256) 0.140(0.134) 0.000(0.000) 0.140(0.134)
72 0.250(0.170) 0.000(0.000) 0.250(0.170) 0.198(0.152) 0.001(0.010) 0.197(0.152) 0.707(0.258) 0.010(0.029) 0.697(0.258) 0.707(0.258) 0.010(0.029) 0.697(0.258) 0.232(0.166) 0.000(0.000) 0.232(0.166)
80 0.275(0.177) 0.000(0.000) 0.275(0.177) 0.247(0.167) 0.000(0.000) 0.247(0.167) 0.715(0.259) 0.008(0.025) 0.707(0.259) 0.733(0.260) 0.001(0.010) 0.732(0.260) 0.240(0.169) 0.000(0.000) 0.240(0.169)
88 0.275(0.177) 0.000(0.000) 0.275(0.177) 0.266(0.172) 0.000(0.000) 0.266(0.172) 0.758(0.262) 0.000(0.000) 0.758(0.262) 0.758(0.262) 0.000(0.000) 0.758(0.262) 0.242(0.169) 0.000(0.000) 0.242(0.169)
96 0.277(0.177) 0.000(0.000) 0.277(0.177) 0.267(0.172) 0.000(0.000) 0.267(0.172) 0.762(0.262) 0.000(0.000) 0.762(0.262) 0.762(0.262) 0.000(0.000) 0.762(0.262) 0.311(0.186) 0.000(0.000) 0.311(0.186)

Bgg Mean

8 0.174(0.128) 0.131(0.108) 0.043(0.073) 0.498(0.190) 0.498(0.190) 0.000(0.000) 0.526(0.200) 0.507(0.197) 0.018(0.048) 0.580(0.204) 0.568(0.202) 0.012(0.038) 0.284(0.161) 0.209(0.137) 0.075(0.095)
16 0.528(0.191) 0.528(0.191) 0.000(0.000) 0.422(0.177) 0.422(0.177) 0.000(0.000) 0.782(0.212) 0.782(0.212) 0.000(0.000) 0.780(0.212) 0.780(0.212) 0.000(0.000) 0.269(0.153) 0.239(0.144) 0.030(0.061)
24 0.386(0.172) 0.356(0.165) 0.030(0.061) 0.485(0.188) 0.485(0.188) 0.000(0.000) 0.815(0.213) 0.815(0.213) 0.000(0.000) 0.811(0.214) 0.811(0.214) 0.000(0.000) 0.264(0.153) 0.230(0.142) 0.033(0.064)
32 0.495(0.190) 0.495(0.190) 0.000(0.000) 0.460(0.185) 0.460(0.185) 0.000(0.000) 0.784(0.212) 0.784(0.212) 0.000(0.000) 0.786(0.212) 0.786(0.212) 0.000(0.000) 0.273(0.154) 0.243(0.145) 0.030(0.061)
40 0.509(0.193) 0.509(0.193) 0.000(0.000) 0.385(0.172) 0.385(0.172) 0.000(0.000) 0.746(0.211) 0.746(0.211) 0.000(0.000) 0.743(0.210) 0.743(0.210) 0.000(0.000) 0.308(0.160) 0.278(0.152) 0.030(0.061)
48 0.524(0.193) 0.524(0.193) 0.000(0.000) 0.441(0.181) 0.441(0.181) 0.000(0.000) 0.504(0.190) 0.504(0.190) 0.000(0.000) 0.504(0.190) 0.504(0.190) 0.000(0.000) 0.271(0.154) 0.241(0.145) 0.030(0.061)
56 0.510(0.190) 0.510(0.190) 0.000(0.000) 0.471(0.185) 0.471(0.185) 0.000(0.000) 0.489(0.188) 0.489(0.188) 0.000(0.000) 0.489(0.188) 0.489(0.188) 0.000(0.000) 0.263(0.152) 0.233(0.143) 0.030(0.061)
64 0.496(0.189) 0.496(0.189) 0.000(0.000) 0.527(0.193) 0.527(0.193) 0.000(0.000) 0.501(0.190) 0.501(0.190) 0.000(0.000) 0.497(0.189) 0.497(0.189) 0.000(0.000) 0.286(0.156) 0.256(0.147) 0.030(0.061)
72 0.309(0.160) 0.279(0.152) 0.030(0.061) 0.395(0.184) 0.319(0.165) 0.077(0.098) 0.502(0.190) 0.502(0.190) 0.000(0.000) 0.486(0.187) 0.486(0.187) 0.000(0.000) 0.285(0.156) 0.255(0.147) 0.030(0.061)
80 0.319(0.162) 0.289(0.154) 0.030(0.061) 0.360(0.175) 0.322(0.165) 0.038(0.069) 0.464(0.184) 0.464(0.184) 0.000(0.000) 0.476(0.186) 0.476(0.186) 0.000(0.000) 0.290(0.157) 0.260(0.148) 0.030(0.061)
88 0.336(0.165) 0.306(0.157) 0.030(0.061) 0.361(0.173) 0.346(0.169) 0.015(0.043) 0.473(0.185) 0.473(0.185) 0.000(0.000) 0.465(0.183) 0.465(0.183) 0.000(0.000) 0.306(0.160) 0.276(0.151) 0.030(0.061)
96 0.324(0.163) 0.294(0.154) 0.030(0.061) 0.377(0.174) 0.377(0.174) 0.000(0.000) 0.465(0.183) 0.465(0.183) 0.000(0.000) 0.465(0.183) 0.465(0.183) 0.000(0.000) 0.310(0.161) 0.280(0.152) 0.030(0.061)

Bgg Max

8 0.361(0.186) 0.121(0.109) 0.240(0.162) 0.655(0.207) 0.641(0.206) 0.013(0.041) 0.326(0.170) 0.280(0.158) 0.047(0.075) 0.318(0.167) 0.284(0.158) 0.033(0.064) 0.678(0.242) 0.368(0.180) 0.310(0.201)
16 0.366(0.200) 0.151(0.112) 0.215(0.177) 0.398(0.214) 0.101(0.101) 0.297(0.199) 0.574(0.202) 0.544(0.198) 0.030(0.061) 0.574(0.202) 0.544(0.198) 0.030(0.061) 0.677(0.232) 0.492(0.192) 0.185(0.169)
24 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.604(0.236) 0.307(0.167) 0.297(0.199) 0.574(0.202) 0.544(0.198) 0.030(0.061) 0.574(0.202) 0.544(0.198) 0.030(0.061) 0.366(0.200) 0.151(0.112) 0.215(0.177)
32 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.665(0.215) 0.553(0.201) 0.112(0.117) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.366(0.200) 0.151(0.112) 0.215(0.177)
40 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.681(0.217) 0.553(0.201) 0.128(0.124) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235)
48 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.666(0.215) 0.538(0.199) 0.128(0.124) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235)
56 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.670(0.217) 0.538(0.199) 0.132(0.127) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235)
64 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.663(0.215) 0.538(0.199) 0.125(0.123) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235)
72 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.663(0.215) 0.538(0.199) 0.125(0.123) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235)
80 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.654(0.231) 0.469(0.189) 0.185(0.169) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235)
88 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.654(0.231) 0.469(0.189) 0.185(0.169) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235)
96 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.654(0.231) 0.469(0.189) 0.185(0.169) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235) 0.400(0.235) 0.000(0.000) 0.400(0.235)

Bgg Min

8 0.418(0.184) 0.394(0.179) 0.023(0.054) 0.298(0.159) 0.293(0.157) 0.005(0.025) 0.518(0.194) 0.513(0.193) 0.005(0.025) 0.484(0.191) 0.479(0.190) 0.005(0.025) 0.336(0.166) 0.325(0.163) 0.012(0.038)
16 0.440(0.181) 0.440(0.181) 0.000(0.000) 0.519(0.189) 0.519(0.189) 0.000(0.000) 0.583(0.197) 0.583(0.197) 0.000(0.000) 0.583(0.197) 0.583(0.197) 0.000(0.000) 0.465(0.185) 0.465(0.185) 0.000(0.000)
24 0.529(0.191) 0.529(0.191) 0.000(0.000) 0.485(0.185) 0.485(0.185) 0.000(0.000) 0.634(0.203) 0.634(0.203) 0.000(0.000) 0.632(0.202) 0.632(0.202) 0.000(0.000) 0.465(0.185) 0.465(0.185) 0.000(0.000)
32 0.582(0.197) 0.582(0.197) 0.000(0.000) 0.485(0.185) 0.485(0.185) 0.000(0.000) 0.674(0.206) 0.674(0.206) 0.000(0.000) 0.634(0.203) 0.634(0.203) 0.000(0.000) 0.573(0.197) 0.573(0.197) 0.000(0.000)
40 0.601(0.199) 0.601(0.199) 0.000(0.000) 0.485(0.185) 0.485(0.185) 0.000(0.000) 0.674(0.206) 0.674(0.206) 0.000(0.000) 0.672(0.205) 0.672(0.205) 0.000(0.000) 0.576(0.197) 0.576(0.197) 0.000(0.000)
48 0.608(0.199) 0.608(0.199) 0.000(0.000) 0.529(0.191) 0.529(0.191) 0.000(0.000) 0.686(0.206) 0.686(0.206) 0.000(0.000) 0.686(0.206) 0.686(0.206) 0.000(0.000) 0.594(0.199) 0.594(0.199) 0.000(0.000)
56 0.616(0.200) 0.616(0.200) 0.000(0.000) 0.529(0.191) 0.529(0.191) 0.000(0.000) 0.710(0.208) 0.710(0.208) 0.000(0.000) 0.706(0.208) 0.706(0.208) 0.000(0.000) 0.594(0.199) 0.594(0.199) 0.000(0.000)
64 0.616(0.200) 0.616(0.200) 0.000(0.000) 0.529(0.191) 0.529(0.191) 0.000(0.000) 0.710(0.208) 0.710(0.208) 0.000(0.000) 0.706(0.208) 0.706(0.208) 0.000(0.000) 0.594(0.199) 0.594(0.199) 0.000(0.000)
72 0.616(0.200) 0.616(0.200) 0.000(0.000) 0.574(0.196) 0.574(0.196) 0.000(0.000) 0.710(0.208) 0.710(0.208) 0.000(0.000) 0.710(0.208) 0.710(0.208) 0.000(0.000) 0.599(0.199) 0.599(0.199) 0.000(0.000)
80 0.616(0.200) 0.616(0.200) 0.000(0.000) 0.640(0.203) 0.640(0.203) 0.000(0.000) 0.710(0.208) 0.710(0.208) 0.000(0.000) 0.710(0.208) 0.710(0.208) 0.000(0.000) 0.606(0.199) 0.606(0.199) 0.000(0.000)
88 0.616(0.200) 0.616(0.200) 0.000(0.000) 0.640(0.203) 0.640(0.203) 0.000(0.000) 0.710(0.208) 0.710(0.208) 0.000(0.000) 0.710(0.208) 0.710(0.208) 0.000(0.000) 0.606(0.199) 0.606(0.199) 0.000(0.000)
96 0.616(0.200) 0.616(0.200) 0.000(0.000) 0.640(0.203) 0.640(0.203) 0.000(0.000) 0.710(0.208) 0.710(0.208) 0.000(0.000) 0.710(0.208) 0.710(0.208) 0.000(0.000) 0.611(0.199) 0.611(0.199) 0.000(0.000)

Bgg Product

8 0.895(0.215) 0.895(0.215) 0.000(0.000) 0.875(0.214) 0.875(0.214) 0.000(0.000) 0.881(0.214) 0.881(0.214) 0.000(0.000) 0.881(0.214) 0.881(0.214) 0.000(0.000) 0.892(0.215) 0.892(0.215) 0.000(0.000)
16 0.926(0.215) 0.926(0.215) 0.000(0.000) 0.918(0.216) 0.918(0.216) 0.000(0.000) 0.921(0.215) 0.921(0.215) 0.000(0.000) 0.921(0.215) 0.921(0.215) 0.000(0.000) 0.926(0.215) 0.926(0.215) 0.000(0.000)
24 0.926(0.215) 0.926(0.215) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.926(0.215) 0.926(0.215) 0.000(0.000)
32 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000)
40 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.931(0.216) 0.931(0.216) 0.000(0.000)
48 0.931(0.216) 0.931(0.216) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.940(0.219) 0.940(0.219) 0.000(0.000)
56 0.949(0.222) 0.949(0.222) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000)
64 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000)
72 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000)
80 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000)
88 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000)
96 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000) 0.987(0.233) 0.987(0.233) 0.000(0.000)

Bgg Median

8 0.200(0.134) 0.184(0.128) 0.017(0.045) 0.277(0.151) 0.277(0.151) 0.000(0.000) 0.467(0.188) 0.462(0.188) 0.005(0.025) 0.822(0.215) 0.822(0.215) 0.000(0.000) 0.178(0.132) 0.115(0.103) 0.063(0.088)
16 0.218(0.135) 0.218(0.135) 0.000(0.000) 0.252(0.144) 0.252(0.144) 0.000(0.000) 0.791(0.215) 0.791(0.215) 0.000(0.000) 0.791(0.215) 0.791(0.215) 0.000(0.000) 0.150(0.118) 0.135(0.111) 0.015(0.043)
24 0.081(0.087) 0.067(0.077) 0.013(0.041) 0.254(0.143) 0.254(0.143) 0.000(0.000) 0.404(0.179) 0.399(0.178) 0.005(0.025) 0.402(0.179) 0.397(0.178) 0.005(0.025) 0.357(0.169) 0.357(0.169) 0.000(0.000)
32 0.475(0.193) 0.456(0.190) 0.018(0.048) 0.267(0.148) 0.267(0.148) 0.000(0.000) 0.377(0.173) 0.377(0.173) 0.000(0.000) 0.386(0.175) 0.386(0.175) 0.000(0.000) 0.406(0.180) 0.406(0.180) 0.000(0.000)
40 0.088(0.090) 0.080(0.084) 0.008(0.032) 0.255(0.146) 0.255(0.146) 0.000(0.000) 0.742(0.213) 0.742(0.213) 0.000(0.000) 0.739(0.213) 0.739(0.213) 0.000(0.000) 0.393(0.178) 0.393(0.178) 0.000(0.000)
48 0.089(0.092) 0.072(0.081) 0.017(0.045) 0.276(0.150) 0.276(0.150) 0.000(0.000) 0.750(0.213) 0.750(0.213) 0.000(0.000) 0.750(0.213) 0.750(0.213) 0.000(0.000) 0.405(0.179) 0.405(0.179) 0.000(0.000)
56 0.455(0.192) 0.437(0.188) 0.018(0.048) 0.284(0.152) 0.284(0.152) 0.000(0.000) 0.756(0.213) 0.756(0.213) 0.000(0.000) 0.747(0.213) 0.747(0.213) 0.000(0.000) 0.162(0.123) 0.146(0.116) 0.017(0.045)
64 0.451(0.190) 0.441(0.188) 0.010(0.035) 0.320(0.159) 0.320(0.159) 0.000(0.000) 0.738(0.212) 0.738(0.212) 0.000(0.000) 0.741(0.212) 0.741(0.212) 0.000(0.000) 0.410(0.181) 0.410(0.181) 0.000(0.000)
72 0.111(0.101) 0.096(0.092) 0.015(0.043) 0.255(0.152) 0.214(0.138) 0.042(0.071) 0.738(0.212) 0.738(0.212) 0.000(0.000) 0.735(0.212) 0.735(0.212) 0.000(0.000) 0.399(0.179) 0.399(0.179) 0.000(0.000)
80 0.113(0.101) 0.103(0.095) 0.010(0.035) 0.420(0.186) 0.378(0.177) 0.042(0.071) 0.725(0.211) 0.725(0.211) 0.000(0.000) 0.378(0.173) 0.378(0.173) 0.000(0.000) 0.400(0.179) 0.400(0.179) 0.000(0.000)
88 0.108(0.098) 0.098(0.092) 0.010(0.035) 0.444(0.191) 0.399(0.182) 0.045(0.077) 0.665(0.206) 0.665(0.206) 0.000(0.000) 0.315(0.157) 0.315(0.157) 0.000(0.000) 0.400(0.179) 0.400(0.179) 0.000(0.000)
96 0.143(0.115) 0.128(0.107) 0.015(0.043) 0.471(0.193) 0.453(0.189) 0.018(0.048) 0.573(0.199) 0.573(0.199) 0.000(0.000) 0.236(0.138) 0.236(0.138) 0.000(0.000) 0.400(0.179) 0.400(0.179) 0.000(0.000)
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3.2. Results and discussion

Figure 3.6: Influence of the concentration of the analytes in the mixture over the average of the errors for the
Bgg method with 32 members and mean combination rule: (a) FB, (b) TBZ and (c) MBC-BM. (d) Influence of
the number of classes from the mixture in the average of the errors of the mixtures. (e) ROC curve.
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3. Analysis of generating diversity methods in the design of intelligent systems for BFs
detection in complex mixtures

Diversity among different diversity generation methods and the ensembles average mixture error. To
conclude the degree of influence of diversity in the error of the ensembles, we present here a summary error
table, see table 3.6, without EFN and EFP, including the different values of the diversity measures employed.
The combination rule selected was the SMV because is better of those rules that fusion class labels. The WI
and the HNV methods are not interesting to show in this table due to the absence of diversity. In the absence
of a balance between diversity and accuracy of the members of the ensemble is difficult to infer very strict
conclusions, except that the process of building better ensembles can not be guided solely by the criterion of
diversity. No measure of diversity offer a correlation between their values implying that a higher accuracy of
the ensemble. The only coincidence occurred with the DF measure in the Bgg and RS, practically occurs in
both directions, the worst accuracy with the worst diversity and viceversa.

Table 3.6: Average mixture errors and their standard deviation between parentheses using neural ensembles
with all the diversity creation methods and diversity measures with SMV. Marked the best errors and best
diversity values in black. Underlined values show the opposite.

DF Dis p Q
Members E DF E Dis E p E Q

Bgg

8 0.297(0.158) 0.525(0.047) 0.308(0.159) 0.010(0.006) 0.303(0.159) 0.517(0.183) 0.296(0.157) 0.765(0.188)
16 0.270(0.151) 0.484(0.081) 0.261(0.150) 0.011(0.008) 0.267(0.150) 0.455(0.222) 0.298(0.158) 0.762(0.229)
24 0.273(0.152) 0.454(0.090) 0.268(0.152) 0.010(0.007) 0.288(0.155) 0.451(0.225) 0.280(0.153) 0.698(0.317)
32 0.286(0.154) 0.456(0.091) 0.292(0.156) 0.010(0.008) 0.263(0.149) 0.423(0.232) 0.266(0.149) 0.687(0.323)
40 0.273(0.153) 0.445(0.090) 0.307(0.160) 0.010(0.008) 0.264(0.149) 0.393(0.231) 0.262(0.148) 0.641(0.356)
48 0.257(0.149) 0.439(0.086) 0.292(0.156) 0.010(0.008) 0.261(0.148) 0.392(0.232) 0.261(0.148) 0.643(0.346)
56 0.263(0.150) 0.442(0.088) 0.300(0.158) 0.010(0.008) 0.268(0.150) 0.403(0.226) 0.259(0.148) 0.672(0.330)
64 0.280(0.154) 0.451(0.087) 0.303(0.158) 0.011(0.009) 0.256(0.147) 0.396(0.229) 0.258(0.147) 0.662(0.332)
72 0.286(0.155) 0.458(0.087) 0.307(0.159) 0.011(0.009) 0.258(0.147) 0.399(0.223) 0.254(0.146) 0.663(0.329)
80 0.281(0.154) 0.453(0.087) 0.304(0.159) 0.011(0.010) 0.261(0.148) 0.384(0.230) 0.254(0.146) 0.647(0.343)
88 0.278(0.153) 0.454(0.088) 0.310(0.160) 0.012(0.010) 0.261(0.148) 0.357(0.241) 0.261(0.148) 0.625(0.357)
96 0.279(0.153) 0.458(0.088) 0.303(0.158) 0.012(0.011) 0.264(0.148) 0.359(0.240) 0.265(0.149) 0.613(0.366)

RS

8 0.398(0.175) 0.598(0.107) 0.403(0.174) 0.268(0.347) 0.278(0.180) 0.165(0.375) 0.162(0.116) 0.123(0.757)
16 0.408(0.177) 0.606(0.124) 0.279(0.150) 0.255(0.323) 0.329(0.190) 0.267(0.334) 0.232(0.142) 0.280(0.718)
24 0.394(0.174) 0.608(0.114) 0.266(0.148) 0.352(0.376) 0.306(0.184) 0.298(0.306) 0.237(0.143) 0.235(0.724)
32 0.389(0.173) 0.616(0.116) 0.266(0.147) 0.370(0.383) 0.267(0.167) 0.260(0.313) 0.229(0.140) 0.309(0.680)
40 0.355(0.166) 0.594(0.118) 0.279(0.149) 0.322(0.362) 0.224(0.139) 0.256(0.315) 0.224(0.139) 0.326(0.659)
48 0.372(0.169) 0.603(0.115) 0.239(0.140) 0.281(0.344) 0.198(0.131) 0.230(0.332) 0.211(0.134) 0.321(0.668)
56 0.376(0.170) 0.608(0.114) 0.236(0.140) 0.263(0.337) 0.203(0.132) 0.232(0.337) 0.204(0.132) 0.282(0.680)
64 0.405(0.175) 0.620(0.112) 0.218(0.136) 0.258(0.333) 0.210(0.134) 0.245(0.332) 0.203(0.132) 0.273(0.658)
72 0.404(0.175) 0.617(0.110) 0.238(0.140) 0.246(0.327) 0.210(0.134) 0.256(0.330) 0.203(0.132) 0.275(0.661)
80 0.400(0.174) 0.618(0.109) 0.262(0.145) 0.254(0.330) 0.211(0.134) 0.252(0.319) 0.212(0.134) 0.283(0.643)
88 0.394(0.173) 0.612(0.106) 0.255(0.143) 0.242(0.323) 0.219(0.136) 0.246(0.314) 0.210(0.134) 0.281(0.655)
96 0.381(0.170) 0.596(0.106) 0.250(0.143) 0.239(0.320) 0.212(0.134) 0.239(0.311) 0.213(0.134) 0.285(0.647)
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3.2. Results and discussion

Global Diversity among different diversity generation methods. In Table 3.7, the diversity generated by
the different methods under different pairwise diversity measures is shown, where the nonpairwise measures
has not standard deviation because it is a unique value. For the pairwise measures all the members generated
diversity is given. In this case, we can also show the nonpairwise measures of diversity for all the members
generated by each diversity generation method. For comparison purposes, the diversity measures obtained with
the NCL method are introduced, which means to get the votes of the members of that ensemble. It is understood
that the NCL makes a fusion of the continuous outputs of its members and not the votes of these, which means
playing a slightly different experiment to the pure NCL. All the members generated with the NCL and value of
λ = 1.0 was used to show the diversity measures.

Table 3.7: Average values of diversity measures among generated members in test set and its standard deviation
between parentheses for the different diversity creation methods. Best module error (BME) and worst module
error (WME) are also given with its standard deviation.

DF Dis p Q KW k Ent BME WME

HNV 0.11(0.005) 0.22(0.33) 0.014(0.039) 0.014(0.039) 0.0002 -1365.222 0.031 0.000(0.000) 0.125(0.174)

WI 0.001(0.004) 0.195(0.311) 0.011(0.032) 0.012(0.034) 0.00001 -17527.5 0.027 0.000(0.000) 0.417(0.305)

Bgg 0.370(0.110) 0.260(0.240) 0.280(0.320) 0.450(0.520) 0.0002 -2736.436 0.501 0.250(0.242) 2.625(0.475)

RS 0.331(0.286) 0.286(0.314) 0.452(0.318) 0.319(0.018) 0.0002 -6214.71 0.533 0.000(0.000) 1.791(0.497)

NCL 0.242(0.033) 0.040(0.131) 0.920(0.144) 0.965(0.129) 0.00002 -920.41 0.034 0.000(0.000) 0.500(0.330)

To conclude something about NCL is not trivial because of the elements mentioned. The method that create
less diversity is the WI, followed by the HNV and then, those who modify the dataset to create diversity, as
Partridge and Yates stated in different works [Partridge and Yates, 1996, Yates and Partridge, 1996]. Opitz
proved that WI is the least effective mechanism to reach a good diversity [Opitz, 1999]. [Sharkey et al., 1995]
discovered that multiple ANN trained with backpropagation starting from random points converge to the same
or very similar local optima. Despite that, the non pairwise diversity measure k gives to the WI method the
greatest diversity, being the only one which does this. In the other cases, the k measure has a similar behaviour
to the others measures. The Bgg and the RS methods obtained higher diversity values, depending on the measure
selected. The RS diversity is slightly higher than the Bgg, specially in non pairwise measures, and also presents
better module errors. The NCL methods is so unstable on the measures given, but presents the higher diversity
in the p and the Q measure. The non pairwise measure shows the NCL as a worst method than WI or the HNV.
This last one presents the best modules error, followed by the WI.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

Studies and developments along this project have helped to achieve high interest conclusions both in the field
of computation as in the detection of pollutants. We now present the main findings of this project:

1. We have made a deep review of the diversity generation methods, ensemble methods, combination rules
and diversity measures.

2. We have compared different methods of diversity creation from the 3 main possibilities in diversity cre-
ation: a) Starting Point in The Hipotesis Space b) Set of Accessible Hypothesis c) Traversal of Hypothesis
Space; giving a wide exploration of the problem.

3. We have compared the Bagging method, the Random Subspaces method, the Negative Correlation Learn-
ing, the hidden nodes variation and the weights initialization variation.

4. We have compared different pairwise diversity measures in the member selection strategy. Also the se-
lection of members with higher accuracy was compared.

5. We have compared different combination rules on the ensemble decision strategy, both from class label
fusion and continuous outputs fusion.The combination of continuous outputs provide more and better
information to make up the ensemble decision. Specifically, the mean rule produces better results than
SMV in identifying pesticides in complex fluorescence mixtures. Also the Max rule produces interesting
results in this information context.

6. We have developed and completed the software tool MULLPY to work with complex ensemble learning,
diversity creation methods, different combination rules, many kind of new parameters and new presenta-
tion methods.

7. There is no diversity measure that could find the best combination for an ensemble in this problem, as
pointed out [Kuncheva and Whitaker, 2003] and other authors in their respective studies to other data
set context. The diversity is a key factor in finding the best possible ensemble, but we also found that
it is needed a compromise, still indefinitely, between accuracy of the members created and its diversity
among them.

8. The modification of the feature space provide much more and better diversity in classification context
than instances, weights initialization or the number of hidden nodes does.

9. The weights initialization and the hidden nodes variation does not provide any diversity at all. Its are
methods to select the best configuration of the architecture, not to generate diversity.

10. The NCL method is more simple to use and requires less computational resources than bagging and
random subspaces method.
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4.1. Conclusions

11. We have developed a variation of the NCL process in the combination stage, after the learning process. In
this problem, the Max rule provides better results than the Mean rule, the original method of combination.
The mean rule provides more stability in the decision making than others.

12. Diversity measures, by themselves, are unable to find a solution to the problem of low concentrations of
fungicides on fluorescence spectra. Despite that, with the diversity generated is now possible to find an
optimal combination of classifiers to improve the results obtained so far. Problem that can be addressed
by optimization (Evolutive algorithms) or by finding a compromise between accuracy and diversity.

Future work

1. The multilabel method is easier to work with the technique of One-Versus-All, dividing the problem into
N binary classifiers, which not only accelerates the convergence in slow algorithms as backpropagation,
but also allows the construction of hybrid ensembles, due to the limitation of many machine learning
methods to work with more than 2 classes simultaneously. Multilabel classification process is then carried
out through the ensemble of those members.

2. The use of evolutionary algorithms (EA) is not only interesting for the learning of individuals or ensem-
bles, attending more possibilities, but for the most diverse selection members within multiple combina-
tions of the individuals.

3. The use of hybrid ensembles seems to provide higher classification accuracies. To extend the study to
other machine learning paradigms like decision trees, Naive Bayes, Support vector machines and also
regression procedures may provide better and more consistent results.

4. To use the original dataset without preprocessing, in order to produce more diversity. The 401 features
available could provide more diversity than this 14 does.

5. To study the separation of the classes MBC and BM with diversity creation methods and explore its
limits.

6. To study more complex rules of selecting diverse but also accurate members in a static manner. The EA
could provide better solutions, but the static study could provide us a better knowing about the problem
in order to design dynamic processes.

7. To work with the NCL in an iterative manner, adding new diverse members after the ensemble learning
process.

8. To substitute the Backpropagation algorithm with a resilient propagation learning algorithm (RPROP),
which is much faster and accurate. To study also the possibility of having a NCL with the RPROP
algorithm.

9. To eliminate the restriction of the making up ensembles with all the spectra, specially in the NCL, build-
ing diverse ensembles for each kind of spectra.
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