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ABSTRACT 

Research in the field of computer vision and intelligent systems has become increasingly 

vast and extensive to meet the needs and conditions of all users. Additionally, new 

machine learning architectures have shown profound results and made the 

interpretation and analysis of media more robust and efficient. The robustness and 

efficiency of these new architectures, coupled with technology development, have 

made a new area of application and opened the door for new research more beneficial 

for the end-user. Indeed, in the field of biology, microscopic image analysis has led to an 

important evolution in terms of the creation of new diagnostic support systems. The 

purpose of the latter is to provide practitioners with an automatic interpretation of 

microscopic images to allow an exploitation of the cells of such a studied disease. 

Different segmentation approaches have been proposed in the literature, but a method 

has yet to be deemed optimal for only a specific application. Therefore, it can be 

admitted that there is no universal method for segmentation; rather it depends on the 

type of knowledge sought. This thesis is articulated around the axis of segmentation 

methods, highlighting the crucial dependence on the specific type of knowledge being 

sought. The main objective of this work is to propose methods and algorithms to help 

recognize the cells of Nosema disease in microscopic images and make the diagnosis. 

These methods are very helpful in many fields and present an important pre-work for 

many applications. To achieve the objectives outlined in this thesis, various approaches 

such as: Machine Learning (ML), Deep Learning (DL, the newest and most efficient 

algorithm in machine learning techniques), and Augmentation Data (AD) are 

implemented and explored. As such, in this thesis, image processing tools will be used 

to calculate interesting features of Noema cells, and computer vision techniques, ML, 

DL, and AD techniques will be employed to recognize them. Finally, an automatic 

algorithm for cell identification and counting will be implemented. The automated 

system performs well in the diagnosis task, demonstrating high accuracy across four 

Nosema infection levels. 
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Resumen 

La investigación en el campo de la visión informática y los sistemas inteligentes se ha 

vuelto cada vez más amplia y extensa para satisfacer las necesidades y las condiciones 

de todos los usuarios. Además, las nuevas arquitecturas de aprendizaje automático han 

mostrado resultados profundos y han hecho la interpretación y el análisis de los medios 

más robustos y eficientes. La robustez y la eficiencia de estas nuevas arquitecturas, junto 

con el desarrollo tecnológico, se han convertido en una nueva esfera de aplicación y han 

abierto la puerta a nuevas investigaciones más beneficiosas para el usuario final. De 

hecho, en el campo de la biología, el análisis de imágenes microscópicas ha conducido a 

una importante evolución en términos de la creación de nuevos sistemas de apoyo 

diagnóstico. El propósito de este último es proporcionar a los profesionales una 

interpretación automática de imágenes microscópicas para permitir una explotación de 

las células de una enfermedad estudiada. 

En la literatura se han propuesto diferentes enfoques de segmentación, pero ningún 

método ha sido considerado óptimo para una aplicación específica. Por lo tanto, se 

puede admitir que no existe un método universal para la segmentación; más bien, 

depende del tipo de conocimiento buscado. Esta tesis se articula en torno al eje de los 

métodos de segmentación, destacando la dependencia crucial sobre el tipo específico 

de conocimiento que se busca. El objetivo principal de este trabajo es proponer métodos 

y algoritmos para ayudar a reconocer las células de la enfermedad de Nosema en 

imágenes microscópicas y hacer el diagnóstico. Estos métodos son muy útiles en muchos 

campos y presentan un importante trabajo previo para muchas aplicaciones. Para 

alcanzar los objetivos establecidos en esta tesis, se implementarán y explorarán 

Aprendizaje Automático (AA), Aprendizaje Profundo (AP) (el algoritmo más nuevo y 

eficiente en técnicas de aprendizaje automático) y Aumento de Datos (AD). Como tal, 

en esta tesis, se utilizarán herramientas de procesamiento de imágenes para calcular 

características interesantes de las células de Noema, y se emplearán técnicas de visión 

por ordenador, y técnicas de AA, AP y AD para reconocerlas. Por último, se 

implementará un algoritmo automático para la identificación y el conteo de células. El 
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sistema automatizado se desempeña bien en la tarea de diagnóstico, demostrando una 

alta precisión en cuatro niveles de infección de Nosema. 
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1 Chapter I: Introduction 
1.1 Motivation 

In microbiological studies focused on diseases, researchers frequently employ direct 

observation methods to gain a deeper understanding of the behaviors exhibited by 

diseased microorganisms or cells within specific conditions. This observation can take 

place at different scales, offering insights into the characteristics and dynamics of the 

microbial entities under investigation. At the level of a colony, researchers often engage 

in counting procedures. This involves quantifying the number of microorganisms 

present within a collective group, providing a macroscopic view of their population and 

distribution. Colony-level observation is particularly useful for assessing overall health, 

growth patterns, and interactions among microorganisms. 

Conversely, observation at the cellular level involves scrutinizing individual 

microorganisms or cells. This finer-scale approach aims to unravel intricate details about 

the morphology and structure of individual entities. Researchers focus on parameters 

such as the shape, size, and texture of cells, seeking to discern patterns or irregularities 

that could be indicative of specific characteristics or behaviors. 

In the case of Nosema, it is a disease known to cause degeneration of the digestive tissue 

in honeybees, leading to acute starvation and, consequently, early mortality. This 

degeneration can also affect the flying behavior of bees, resulting in a reduced 

population of bees (Eiri, Suwannapong, Endler, & Neih, 2015). The impact of Nosema 

extends beyond the bees themselves; it has adverse effects on plant species diversity 

and crop productivity. This, in turn, leads to pollination shortages and substantial 

economic losses in honey production (Gisder, Schuler, Horchler, Groth, & Genersch, 

2017), impacting both honey production and pollination efficiency. 

The motivation behind undertaking this thesis is rooted in the recognition of significant 

deficiencies and losses stemming from the impact of infectious illnesses on food-

producing animals, particularly bees. The identified deficiencies and losses serve as a 

driving force for the research conducted herein. Pollination is a fundamental ecological 

process that facilitates the reproduction of flowering plants, contributing to biodiversity 
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and overall ecosystem health. The potential consequences of a breakdown in the 

pollination process extend beyond the immediate impact on bees. If effective diagnostic 

measures are not in place to identify and combat infectious illnesses in bees, crucial 

actions to treat the affected bees and hives may not be implemented. This failure in 

diagnosis and subsequent treatment has the potential to exacerbate the spread of lethal 

diseases among bee populations. The repercussions of such a scenario could be severe, 

not only for the bees themselves but also for the broader ecosystem, agriculture, and 

food production systems that rely on the pollination services provided by these vital 

pollinators. 

In summary, the study of Nosema is crucial not only for understanding the health of 

honeybee colonies but also for assessing its broader ecological and economic 

ramifications, including effects on plant species, crop productivity, and the pollination 

ecosystem. 

In essence, this thesis seeks to address these critical issues by contributing to the 

development of effective diagnostic tools and strategies for combating infectious 

diseases in bees. By doing so, it aims to mitigate the potential losses and deficiencies in 

pollination processes, safeguarding the health of ecosystems and the essential role 

played by pollinators in sustaining biodiversity and food production. Furthermore, in 

earlier research endeavors, there has been a notable gap in effectively addressing this 

disease from a technological perspective. To address this deficiency, the present thesis 

aims to leverage a comprehensive set of tools in microscopic image processing alongside 

advanced machine learning methods. The intention is to enhance the identification of 

this disease through the application of robust and innovative technological approaches. 

This thesis introduces a novel automatic algorithm designed to detect and count 

Nosema cells within microscopic images. The primary objective is to identify and 

quantify these cells to assess the level of infection, thereby providing valuable support 

for diagnosing the associated disease. 
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1.2 State of the art  

1.2.1 Nosema disease and its negative complications  

Two species of the genus Apis (the true honeybees) have long attracted man's special 

attention. These are the European honeybee, Apis Mellifera (Figure 1. 1, A), and the 

physically smaller but very similar Asian honeybee, Apis Ceranae (Figure 1.1, B). These 

species have been of particular interest to man because they produce large amounts of 

honey and can be kept as “domesticated animals” in movable nests or hives. Throughout 

the past centuries, the European honeybee has been transported all over the world and 

widely distributed. The Asian honeybee, however, is restricted only to Southeast Asia, 

China, eastern Russia, and Japan. Due to this restriction, Apis Ceranae is to some extent 

being actively replaced by A. Mellifera. Honeybees are well studied insects. Many 

detailed descriptions of the honeybee´s biology can be found in literature, such as 

(Seely, 1995) and (Winston, 1987). 

 

Figure 1.1 Apis Ceranae (A), and Apis Mellifera(B) 

Apis Mellifera and Apis Ceranae (figure 1.1), the European and Asian honeybees, support 

biodiversity and are also of considerable agricultural relevance. These bee species have 

been the topic of several recent research because they are critical pollinators of human-

maintained crops. According to the research of (Klein et al, 2006), honeybees account 

for 90% of commercial pollination. Originally introduced by Europeans for crop 

management, many honeybees are now now kept in heavily farmed areas. As a result, 

honeybee health is inextricably tied to agricultural success and sustainability. 

Pathogenic research is being prioritized to preserve the health of the honeybee.  

Despite new breakthroughs, populations are dropping all around the world, from France 

to the United States. If the current population reduction continues, many agriculturally 
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developed countries may face a large-scale environmental problem. If not addressed 

appropriately, such a calamity will exacerbate the world's food crisis. Researchers have 

been working hard on uncovering because honeybee colonies are dying all around the 

world, thanks to donations from agriculturally based economies and huge 

environmental corporations. Hive depopulation syndrome (HDS) 

The depopulation syndrome is characterized by the decrease in the number of bees in a 

colony, without apparent cause. In depopulation, the surviving bees cannot maintain 

the basic tasks of the colony, causing it to collapse and disappear without presenting 

any symptoms that allow one to pinpoint the origin of the problem (see Figure1.2) 

 

Figure 1.2 Honeybee colony collapsed by Nosema Ceranae (Higes, Meana, Bortolomé, 

Botias & Martín, 2013) 

Honeybee colonies collapse due to various causes, including a lack of resources, 

predation, sickness, and environmental variables. Changes in nest temperature, for 

example, disrupt brood rearing circumstances, which has the potential to reduce 

organism count and biodiversity within a colony (Klein et al, 2006). Any of the 

aforementioned loads might be critical in promoting catastrophic hive collapse. The 

detection and understanding of the fungal diseases Nosema Ceranae and Nosema Apis 

is one area of focus for halting the tremendous loss of world honeybee populations. 

Pathogenic elements are a health risk for every colony, and infection of tiny organisms 

can cause sickness inside the hive.  

The so-called hive depopulation syndrome is not a new phenomenon. It was detected 

in Spain, in the late 90's and early 2000, although with a lower diffusion than the current 

one. There are several possible causes of depopulation, which were investigated until 
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the real cause was found. Such possible reasons ranged from a depopulation hypothesis 

due to the treatment of sunflower seeds with insecticides to parasitic diseases of bees 

(Matt, Wall, & Zamir, 2014). The latter will be the real cause and the object of our 

interest.  (See Figure1.3 and Figure 1.4) 

 

Figure 1.3 Example of sampling zones in Spain: Castilla-La Mancha (Buendia & al., 

2018) 
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Figure 1.4 Sampling Nosema disease in several ecoregions of north Asia 

(Ostroverkhova, Konusova, Kucher, Kireeva, & Rosseykina, 2020) 

Nosemosis, a degenerative gut illness, is caused by the microsporidia Nosema ceranae 

and Nosema Apis. Nosemosis is a disease that causes organism death, which can result 

in fast colony loss. Both parasitic and fungal research is quite recent and innovative. One 

of these fungi, Nosema ceranae, is thought to be more dangerous than N. Apis with 

important agricultural value. The transfer of its pathogenicity from its native host, A. 

Ceranae, to A. Mellifera, however, poses a difficult scenario for infectious disease 

prevention. The dual infection of Nosema ceranae in different bee species could 

potentially lead to colony collapse on a global scale if it continues to spread rapidly 

across all bee populations. Of particular concern is the European bee species, A. 

mellifera, which is widely used in commercial agriculture. If Nosema ceranae becomes 

more generalized and infects A. mellifera extensively, it could result in millions of dollars 

lost in the agricultural industry. There are few treatments for combating parasitic 

fungus, although approaches are constantly developing. To effectively protect bee 

populations, a thorough examination of these parasitic species is required. 

Understanding their behavior and developing effective control measures is crucial for 

the conservation of bee populations worldwide. 
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Several works on the impact of Nosema disease on commerce, society, and food have 

been published, as shown in (Sinpo, Paseton, Disayathanoowat, Krongdang, & 

Chantawannakul, 2018) and (Paneka & al., 2018), and the disease is now of major 

economic importance globally (Calderón & Ramrez, 2010). Biologists are particularly 

interested in the health of the two kinds of bees, not only because of their importance 

in the economy and food production, but also because of the critical function they play 

in pollinating agricultural and horticultural crops. 

1.2.2 Biological diagnosis of Nosema disease 

Detecting spores of Nosema spp. using microscopic analysis has historically been used 

to diagnose Nosema’s illness (Slimanuki & Kanox, 2000).  

However, given the recent discovery that both Nosema Ceranae and Nosema Apis harm 

western honeybees (Apis mellifera), genetic approaches are needed to distinguish 

between two various types of microsporidia. This is important since the spores of the 

two Nosema species cannot be consistently recognized based only on their shape (Fries, 

Hernandez, Meana, Plencia, & Higes, 2006). Furthermore, microscopic investigations are 

not as sensitive as molecular approaches, such as PCR, at detecting low levels of Nosema 

infection.  

There are several biological descriptions of its DNA and behavior in the literature, 

including (Higes, Hernández, Bailón, Palencia, & Meana, 2008) and (Higes, Martn, & 

Meana, 2010). 

Furthermore, microscopic inspection of Nosema spores is not only expensive, but also 

time-consuming and difficult. Previously, the first molecular approaches used to 

distinguish Nosema spp. required PCR followed by sequencing like in (Higes, Martn, & 

Meana, 2006) and (Chen, Evans, Smith, & Pettis, 2008) or the use of restriction analysis 

of PCR products like in (Klein & al., 2006). Although effective, some approaches require 

extra steps beyond simple amplification.  

In (Martín et al., 2007), a simplified approach for identifying N. Apis and N. Ceranae was 

established. They developed a duplex PCR-based approach for amplifying the 16S rRNA 

sections of N. Apis or N. Ceranae in a single reaction with two sets of primers, allowing 

them to identify both microsporidians in tandem.  
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More recently, a real-time duplex PCR assay that amplified the same 16S rRNA regions 

as N. Apis and N. Ceranae in a single reaction was devised (Bourgeois, Renderer, 

Beaman, & Danka, 2010).  

Real-time PCR thermocyclers and techniques, on the other hand, are not widely 

accessible in many laboratories and are more expensive than normal PCR thermocyclers 

and procedures. As a result, an enhanced multiplex-PCR approach is used to 

differentiate and quantify Nosema spp. in honeybees in a single reaction. This method 

combines Martin-Hernández et al.'s (Martn & al., 2007) duplex PCR-based method with 

the relative RT-PCR strategy (Dean, Goodwin, & Hasiang, 2002), which incorporates a 

house-keeping gene of the host in each reaction for relative quantification based on PCR 

band intensity. Using a conventional PCR thermocycler, this semiquantitative approach 

may assess Nosema infection levels.  

A new DNA extraction procedure was also used to improve the amount of DNA retrieved 

from honeybee samples. The newly enhanced approach offers significant advantages 

over previously reported conventional PCR-based tests, as demonstrated in this work. 

Indeed, this novel technology allows for the detection and quantification of Nosema 

spores in honeybee samples. A multiplex PCR test will be used to diagnose and quantify 

Nosema infections in honeybees (Apis Mellifera) using the approach described in (Bailey 

& Ball, 1991). The precise identification of the microsporidia species, namely Nosema 

apis and Nosema ceranae, holds paramount importance in both comprehending and 

managing Nosema disease within honeybee (Apis mellifera) populations. 

1.2.3 Diagnosis of Nosema disease using technical and microscopic image analysis 

methods 

Diagnosing parasitic diseases in bees continues to rely on traditional microscopic 

analysis methods. However, studies focusing on the life history detection phase of 

microsporidia N. Apis and Ceranae (Martín & al., 2009) employ image processing 

techniques. These techniques are utilized to monitor temperature variations, which are 

then analyzed to determine potential temperature-dependent influences on the life 

cycle (refer to Figure 1.5).  
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Figure 1.5 Detailed views of ventricular epithelial cells parasitized at 7 days p.i. at 33°C.  

N. apis-infected cells (A) displayed similar quantities of immature and mature stages 

(red), while N. ceranae-infected cells (B) exhibited a higher proportion of immature 

stages (Pink) at this time (Martín & al., 2009) 

Furthermore, numerous recent studies, like (Suannapong, Maksong, Phainchajoen, 

Benbow, & Mayack, 2008) and (Mura & al., 2020), attempt to cure this condition by 

chemical modeling. 

In addition, honeybees are important in computer science. Several efforts have included 

observing bees and manipulating their behavior. For example, (Tu, Hansen, Kryger, & 

Ahrendt, 2016) observed bee behavior to assist beekeepers in managing their honey 

colonies. The key finding of this study was the identification of bee disruption induced 

by a disease, Colony Collapse Disorder (CCD), or colony health assessment. 

Similarly, numerous image analysis approaches were investigated in (Giuffre, Lubkin, & 

Tarpy, 2017) to research honeybee auto grooming behavior. Chemical and gas sensors 

were employed to collect data. To identify illness, Destructor infestations were 

introduced into the honeybee colony.  
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In (Szczurek, Maciejewska, Bak, Wilde, & Siuda, 2019), during a 12-hour experiment, the 

researchers measured the environment of six beehives using six different types of solid-

state gas sensors.  

There are now numerous notable pieces of research accessible in image processing 

relating to the study of Nosema’s illness. 

The Scale Invariant Feature Transform was used to extract features from cell pictures in 

(Alvarez-Ramos, Nio, & Santos, 2013). Image data is converted into scale-invariant 

coordinates with respect to local features using this approach. On the obtained 

microscopic pictures, a segmentation approach and a support vector machine algorithm 

were used to perform automatic categorization of N. Apis and N. Ceranae microsporidia. 

In (Patricio-Nicolas, Mauro-German, Sergio-Damián, Paola-Verónica, & Hector-Luis, 

2016), the authors used the Open CV library to do the identification of Nosema cells in 

microscopic images To achieve the task of identifying the contours of each spore, we 

utilized the findContours function from the OpenCV library, as described in the 

(“Structural Analysis and Shape Descriptors OpenCV 2.4.13.0 documentation,” n.d.-b). 

This function made use of the Suzuki algorithm. As the Nosema cells exhibit an elliptical 

form, we employed the fitEllipse function, also detailed in the (“Structural Analysis and 

Shape Descriptors OpenCV 2.4.13.0 documentation,” nd-a) to implement Fitzgibbon's 

ellipse detection algorithm. Finally, considering the shape elliptical measurements in a 

range of approximately 5-7µm x 3-4µm, it was assumed that any preselected elliptical 

shape with width and length measurements of the ellipse within the mentioned range, 

would correspond to a Nosema spore.  

In (Prendas-Rojas, Figueroa-Mata, Ramírez-Montero, Calderón-Fallas, Ramírez- 

Bogantes, & Travieso-González, 2018), the authors implement an automatic infection 

diagnosis system. Image processing tools were employed to effectively segment the 

images and compute the three most significant descriptors of Nosema spores: size, 

eccentricity, and circularity. Once the Nosema cells were characterized within the 

microscopic images, the researchers proceeded to quantify the spores and ascertain the 

extent of infection. The accuracy of success of the system has been considered high 

(84%). 
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The authors of (Dghim, Travieso-Gonzales, Dutta, & Hernández, 2020) employed image 

processing approaches to extract the most valuable information from Nosema 

microscopic pictures. Following that, they used an Artificial Neural Network (ANN) for 

recognition, which was statistically evaluated using the cross-validation approach.  

1.3 Hypothesis  

By leveraging advanced tools in microscopic image processing, machine learning 

methodologies including transfer learning and deep learning, this thesis aims to develop 

an automatic algorithm for the detection and counting of Nosema cells. It is 

hypothesized that the proposed algorithm will not only surpass traditional methods in 

accuracy and efficiency but will also contribute significantly to the diagnosis of Nosema 

disease. The successful implementation of this algorithm is expected to enhance the 

understanding of the disease, providing valuable support for biologists, and contributing 

to the preservation of honeybee populations and overall ecosystem health. Moreover, 

the automatic algorithm is anticipated to streamline the detection and diagnosis 

process, saving time and effort for biologists involved in Nosema disease recognition 

and contributing to more efficient and timely interventions. 

1.4 Objective 

Due to the high costs and complexity of manual and commercial disease detection 

systems, this investigation strays from traditional systems and takes a newer approach. 

Beyond the many advantages of image analysis, these newer methods automate the 

intricate process of detecting and distinguishing diseased cells from other cell types 

present within the same microscopic image. 

The fundamental goal of this research is to develop an algorithm capable of automated 

identification and cell counting, which will allow biologists to measure infection levels 

and provide accurate diagnoses. A number of consecutive tasks or objectives must be 

performed in order to reach this overarching goal: 

1. Creation of Image Dataset: Generate a comprehensive dataset of images by 

cropping individual shots of Nosema cells and other coexisting objects from the 

primary microscopic images. 
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2. Feature Investigation of Nosema Cells: Thoroughly investigate the distinctive 

features of Nosema cells and compute them. This investigation involves 

meticulously assessing various tools in image processing and pattern recognition 

within computer vision. The aim is to either select an existing methodology or 

formulate a new one and compile a dataset of features. 

3. Testing with Diverse Machine Learning Techniques: Utilize the constructed two 

datasets to test a diverse array of machine learning, deep learning, and transfer 

learning models to know the most proficient method for identifying Nosema 

cells. This process aims to establish a streamlined, rapid, and reliable model for 

spore recognition. 

4. Model Creation and Implementation: Implement an automatic algorithm for 

Nosema counting and diagnosis using the model established in the previous step. 

While the methodology proposed in this project applied to images of Nosema disease, 

its foundational principles remain versatile and applicable to other image categories, as 

long as they conform to the same statistical criteria. This adaptability underscores the 

potential broader impact of the proposed approach in image analysis and pattern 

recognition. 

1.5 Methodology 

The primary aim of this study is to introduce a robust method capable of recognizing 

and identifying cells afflicted by Nosema disease. While certain prior efforts have delved 

into the analysis of microscopic images of Nosema, the methodologies proposed therein 

are often confined to the application of specific morphological tools for image 

investigation. In a solitary instance, a support vector machine was employed to process 

extracted features. Although these undertakings are intriguing, they fall short of 

delivering comprehensive solutions. This means that with the development of 

technologies and human needs to deal with computer vision, processing more methods 

under this axe becomes a necessity. One of our main contributions of this thesis started 

from this point; how to exploit proposed techniques in image processing, computer 

vision, and machine learning to establish a system capable of analyzing the microscopic 

images of Nosema and detect the cells’ disease. 
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This work combines two disciplines: microbiology and image processing. The aim of this 

project is to devise a methodological protocol customized for detecting and identifying 

Nosema disease cells in microscopic images. This will be achieved by employing 

innovative image processing tools. The implementation of a coherent analysis strategy 

is crucial, covering each stage from image acquisition to the extraction of relevant 

information. 

The dataset used in this research was obtained from “Centro de Investigación Nacional 

de Apicultura Tropical” (CINAT), belonging to Universidad Nacional de Costa Rica.  

Initially, the dataset of images intended for study (including its origin, data, and 

structure) is introduced. We used a total of 400 microscopic photos that were arranged 

in files of five and labeled by the specialists with the severity of the infection (very mild, 

mild, moderate, semi-strong, severe). Figure 1.6 shows an example of every group. 

 

Figure 1.6 An example of used microscopic images from every infection level: from (a) 

to (d): very mild, mild, moderate, semi-strong, and strong 

Second, the construction of a DS1 sub-images dataset derived from the original dataset, 

Subsequently, this dataset is utilized for calculating image features. Techniques 

involving image segmentation and object characterization are applied, leading to the 

creation of a new feature dataset known as DS2. 
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Third, ANN and SVM classification systems will be automatically reproduced and applied 

to the dataset of features (DS2) for the recognition of Nosema spores. Furthermore, a 

CNN will be implemented and reproduced to DS1 for the task of recognition. Also, 

several models of transfer learning will be fine-tuned and applied, the experiments will 

be conducted according to different training conditions, the data augmentation tool is 

approved to push the results to get the maximum accuracy that can be achieved in this 

work. 

Fourth, an automatic algorithm will be developed performing the pre-trained model 

with the highest accuracy to count the cells within the image and identify the infection 

level. 

The stages, the experiments as well as the results will be detailed in the chapters of this 

thesis. 

1.6 Contributions and results 

During the course of this doctoral thesis, three publications were produced: a book 

chapter, a conference paper, and a journal paper. All these publications delve into the 

implementation of microscopic image segmentation approaches, merging them with 

classification and recognition systems to achieve the detection and identification of 

Nosema cells. 

We will present a summary of the two papers. 

A summary of the conference Paper: “Nosema Pathogenic Agent Recognition Based on 

Geometrical and Texture Features Using Neural Network Classifier.” 

The dataset utilized in this paper comprises 30 microscopic images. From these images, 

all the existing objects were cropped with a semi-automatic program to obtain a second 

dataset of 185 sub-images. The implemented approach extracted a number of 9 

features: geometric and texture parameters which are the most useful in the definition 

of our Nosema cell. The choice of these parameters was based on the good role played 

by the preprocessing block in defining the perimeter of Nosema cells. Subsequently, a 

Multi-Layer Perceptron NN trained by the Back Propagation algorithm (MLP-BP) has 

been configured to do the classification of images between Nosema and non-Nosema. 
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The measure quality is based on the binary confusion matrix, the methodology was 

based on a supervised recognition approach, and the training and test samples were 

randomly separated according to a cross-validation strategy to be retained until getting 

the optimum result. 

A summary of the journal paper: “Analysis of the Nosema Cells Identification for 

Microscopic Images” 

Several techniques are used in this study to recognize and locate Nosema cells among 

other existent objects in a microscopic picture. 400 microscopic pictures were utilized 

as the primary dataset. From this dataset, we constructed DS1, a new dataset containing 

2000 sub-images. Subsequently, we employed two main strategies for the recognition 

of Nosema images. The initial strategy involves using image processing techniques to 

extract useful information and attributes from a collection of microscopic images. The 

first dataset used comprises 400 microscopic images, from which we extracted 2000 

sub-images to construct the second dataset. Following this, machine learning methods 

like neural networks (ANN) and support vector machines (SVM) are employed for the 

detection and classification of Nosema disease cells. The second strategy investigates 

deep learning and transfers learning. Multiple algorithms were investigated, including a 

convolutional neural network (CNN) classifier and multiple transfer learning methods 

(Alex Net, VGG-16, and VGG-19), which were fine-tuned and used to the object sub-

pictures to distinguish the Nosema images from the other object images. 

1.7 Structure of the Thesis 

Throughout this thesis, our endeavor has been to encompass an extensive array of 

details while striving to maintain completeness and rigor in presenting essential 

information. Most of the high-level details are explained in the five chapters that make 

up this thesis. The chapters are organized as follows: 

Chapter 2 details the methodology developed for the construction of the datasets 

ranging from image processing to feature calculation. 

Chapter 3 describes the approved classification systems and details the methods 

implemented, the experiments carried out, and the recognition results provided. 
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In Chapter 4, the procedures for performing the automated algorithm for Nosema cell 

counting and diagnosis are detailed. The automatic algorithm detects the cells, counts 

their number, and determines the infection level (the diagnosis).  The algorithm was 

tested on a variety of microscopic images and produced the most effective outcomes.  

The report ends with the overall conclusion, outlining the findings and future works. 
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2 Chapter II : Dataset analysis and 
segmentation of microscopic 
images 

2.1 Introduction 

Following the presentation of this project´s motivations, hypothesis, objectives, and 

state of the art in Chapter 1, Chapter 2 will describe the first part of the method utilized 

in this study to recognize Nosema cells. This first part consists in extracting of objects 

that exist in microscopic images to: 

1. Build the dataset of sub-images of objects extracted from the primary images    

and which are in RGB format. These sub-images will be used in the identification of 

Nosema using deep learning and transfer learning techniques (in Chapter 3). 

2. Preprocess and segment the collected dataset of images to calculate the most 

significant features which can characterize and define an object in a microscopic image 

and thus build a second dataset in Excel file form to be used later in the recognition of 

Nosema basing on ANN and SVM classifiers (in Chapter 3). 

The preprocessing and preparation of the extracted sub-images for segmentation, as 

well as the basic principles of segmentation of these images (in grayscale level and in 

RGB color), are detailed in this chapter. More specifically, as will later be discussed in 

this chapter, the segmentation of these images is conditioned by criteria of brightness 

and texture of the studied microscopic images. As such, this thesis will propose and 

employ a segmentation algorithm that is self-adapting to the context of the used images. 

Indeed, this algorithm is quite original due to its genericity, flexibility, and adaptability 

to variable contexts.  

2.2 Extraction 

2.2.1 Problems with the used microscopic images 

Microscopic images used in this study were acquired using Cantwell's method, as 

employed by biologists.  
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2.2.1.1 Cantwell's method and related problems 

Cantwell's method is described in (Molina & al., 1990). The process followed in this 

project was to collect 30 adult bees per sample and place them on absorbent paper. The 

bees' abdomens were then separated and put in a mortar to macerate. Each abdomen 

received 1.0 ml of distilled water, for a total of 30 ml. The mash was stirred for a minute 

to be homogenized, then a drop of the mixture was placed on a blade. The macerated 

abdomens were ready to be imaged under a microscope at a magnification of 40x at the 

end of this operation. This method was applied to 75 samples, which is comparable to 

2,250 adult bees. This approach requires the counting of all Nosema spores framed by 

double lines, including those that contact the double lines on the left and top sides of 

each block, but not those that touch the bottom double lines or those on the right side 

of the block. This is done in just five of the twenty-five center blocks (see Figure 2.1 and 

Figure 2.2), specifically the four corner blocks and the center block. 

 

Figure 2.1 Blocks used for spores counting in a hemocytometer. 
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Figure 2.2 Actual image of the hemocytometer used in capturing of microscopic 

images. 

Positioning the Nosema cells within the photos presents a challenge in its own right, as 

they might sometimes be obscured by other objects or located on the grid or blocks 

utilized by biologists for spore counting. The grid is also an object occupying a large part 

of the image (Figure 2.3) and in the case of cell counting, it can be considered as an 

artifact, especially in case of overlap. 

 

Figure 2.3 A microscopic image with the red color of the Counting Grid. 

The artifact itself is a big problem because its brightness level is too high in the images, 

this poses a problem when transforming the image into grayscale, more precisely when 

detecting the elliptical shape of the Nosema cell (see Figure 2.4). This problem affects 
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the shape of the cell, it gets smaller or bigger or completely changes its shape (Figure 

2.5). 

 

Figure 2.4 Example of cells overlapping the counting grid 

  

 

 

Figure 2.5 Example of the change in cell shape during the preprocessing phase  

2.2.1.2 Noise problem of microscopic images 

Figure 2.6 illustrates a representative photograph obtained under a microscope using 

the Cantwell method. It is evident that a considerable amount of noise is present, with 

numerous elements in the image not corresponding to Nosema spores. Moreover, there 

is a lot of similarity between the spores' color and the background color. 
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Figure 2.6 Image obtained by the microscope: (A) a whole image and (B) a part of the 

image that shows the existing noise. 

  

Figure 2.7 clearly describes the noise that affects the spores of Nosema. In such 

instances, the sole identification of Nosema spores becomes unfeasible, as they would 

be perceived as distinct objects. 

 

 

Figure 2.7 Example of spores hidden behind or superimposed on other objects:  

Nosema spores in the red circle. 

  

2.2.2 Building of dataset from sub-images extracted from microscopic images 

Based on the problems detailed before, the processing of the complete microscopic 

image is likely to lead to the disappearance of numerous Nosema cells or their 

misidentification as noise. Furthermore, objects that have a shape close to that of 
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Nosema will be considered as Nosema cells.  Due to this reason, the decision was made 

to initially analyze the characteristics of these cells by isolating them through cropping 

from the original digital image (Figure 2.8). 

 

Figure 2.8 Instance of dataset extraction of Nosema cells and other existing objects in 

the microscopic images. 

  

The procedure begins by selecting the region of interest (ROI), followed by the 

development of a simple semi-automatic algorithm to capture and crop the cell's image 

within the chosen ROI. Subsequently, automated preprocessing is applied to ascertain 

the cell's shape. The used microscopic images are loaded by several objects, they are 

quite unclear and noisy. To mitigate this, we involve Nosema cells that are distinctive 

from other items, ensuring that only pertinent information is extracted for analysis. Our 

preference is for a minimally sized, isolated cell area (see Figure 2.9). Thus, each Nosema 

cell subpicture contains only one clear cell. The same work is applied to objects that are 

not considered Nosema cells. Based on the preceding phases, a DS1 database was built 

that contains a total of 2000 sample images. DS1 consists of 1000 sample images of 

Nosema cells and 1000 images of non-Nosema cells (that is, any different object that 
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exists in the microscopic images). Figure 2.9 below depicts the process of building DS1.

 

Figure 2.9 Construction of the image dataset contains both types of objects Nosema 

(N) and none Nosema (n-N) 

In this chapter, the method involves collecting the Nosema cells and the coexisting 

objects (ROIs) in the studied microscopic images and investigating and analyzing these 

ROIs automatically. The next chapter details the detection of Nosema cells among other 

non-Nosema items. 

2.2.3 Automatic segmentation and features extraction: building of dataset with 

extracted features: 

The aim of this part of the chapter is to propose a method that prepares objects for 

extracting semantic information. To achieve this objective, this approach has been 

proposed: 

Step 1: Contour detection of the extracted objects: the goal of this step is to extract and 

calculate the most relevant and reliable geometric features that characterize an object. 

Step 2: Extract the objects from their background:  The aim of this second step is to study 

the object color: color channels as well as texture. 

2.2.3.1 Extracting the shape of the object 

During the extraction of the cell shape, the following objectives must be achieved: 

- the outline must be thin: the ideal thickness of the outline must be one pixel, 
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- the shape must correspond to the cell wall. 

The technique for contour extraction needs to be in alignment with the rest of the 

processes, as the significance and accuracy of the extracted contours play a crucial role 

in distinguishing between the cells and obtaining their measurements. 

There are two viable approaches for object identification: using regions or contours. 

However, we find the contours approach to be more appropriate. It is the contours of 

the cells that will be scrutinized to facilitate their identification. The contour or shape 

can be appreciated as the edge or border of two regions (objects). Detecting the edges 

of objects is equivalent to detecting changes in gray levels, or discontinuities at the 

boundary of two regions. The cells are distinct from the image's background, which is 

defined by a lower gray scale level. 

2.2.3.1.1 Classic edge extraction techniques 

Different approaches are used, we will mention derivative approaches, surface methods 

and, more recently, active contours. 

2.2.3.1.1.1 Gradient approach 

The gradient, in one pixel of a digital image, is a vector characterized by its modulus and 

direction. The module is directly related to the amount of local grayscale variation. The 

direction of the gradient is orthogonal to the boundary that passes at the point 

considered (Figure 2.10) and is oriented from the light part to the dark part. 

 

Figure 2.10: Gradient of a given point belonging to a given boundary 
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By considering f (x, y) the grayscale function of the image, the gradient is used to 

measure the rates of change of this function values with respect to the distances in the 

direction x and y, by the maximum of the first derivative or by the passage to zero of the 

second derivative.  

The study of an image behaves like the study of a function. To make the discontinuities 

appear in a signal, it is necessary to work on the differences between neighboring pixels, 

a difference that relates to the gray level. Figure 2.11 shows the calculation of the 

gradient using the filter of Sobel and Prewitt for two images, A and B. A is a Nosema cell 

image, and B is a non-Nosema image. 

 

Figure 2.11 Calculating a gradient with multiple filters 

 

The results are quite comparable for both filters they both produced open results. 

Additionally, the contours were relatively thick, exceeding two pixels in width. Knowing 

that the size of the matrix used for the calculation of the gradient was of size 3x3 there's 

a potential for closed contours. However, such an operation would generate an outline 

that might not align precisely with the concave region's wall. Moreover, this contour 

would not be an accurate representation of the wall for the identification of objects. The 

objective is to have the thinnest possible outline (one pixel). Unfortunately, gradient 

usage falls short in delivering fine contours, despite producing closed contours for all 

cells. 
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2.2.3.1.1.2 Laplacian approach 

The maximums of the first derivative correspond to the zero passages of the second 

derivative, signifying locations with substantial grayscale variations. Since the first 

derivative is very sensitive to noise, the second derivative of the signal is then calculated. 

The second derivative, in the direction of the gradient, passes through 0 by changing the 

sign on an outline point. This causes the Laplacian to: 

∇�� = ����	� + ������   equal to 0 in these points. The passages by zero, between the dark 

areas and the light areas are thus localized. The principle is to calculate the Laplacian of 

the image and look for the zeros. 

 

Figure 2.12 Contour search with the Laplacian 

The results are almost the same for both image types (Figure 2.12). The contour of the 

cell seems to decompose into two internal and external "contours". The ideal contour is 

between the two contours obtained. The thickness of the contour, thus obtained, is 

about 5 to 6 pixels in these examples. The resulting contours are all closed but the 

disadvantage of this method is that the resulting contours are too far from the actual 

contours of the object; the difference is estimated at about 5 pixels. Thus, the Laplacian 

cannot allow a good extraction of the contour of a cell, more precisely of the wall of a 

cell. 
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2.2.3.1.1.3 Active edges  

An active edge is a set of points that we will try to move, to make them fit a shape. The 

idea of this method is to move the points to bring them closer to the areas of high 

gradient, while retaining characteristics such as the curvature of the contour or the 

distribution of the points on the contour, other constraints related to the arrangement 

of the points. Active contours were also used in this study and proved to be as effective 

as gradient or Laplacian methods, but the disadvantage of this method is that it is costly 

in terms of calculation time and operations since we will repeat the work for 2000 

images. 

2.2.3.1.1.4 Binary mathematical morphology  

The well-known tools of binary mathematical morphology were also tested in this study 

and proved to be more effective than the previously cited methods. 

2.2.3.1.2 Contour extraction using mathematical and binary morphology tools 

Since the contour methods cited have not been validated and the contours calculated 

by mathematical and binary morphologies were the most appropriate, we will quote 

and explain the steps for calculating the contour of an object. 

The analysis of images by mathematical morphology dates to the 1960s. This theory was 

initially introduced in materials science by J. Serra to analyze objects through their 

texture (Serra, 1982). Over the past two decades, it has undergone many developments, 

both theoretically and practically. It now covers a wide range of fields of application, 

particularly in robotics and machine vision, medical imaging and even multimedia 

(Soile,2004). Originally developed for the study of porous materials, mathematical 

morphology now finds its applications in many areas of image processing, both 2D and 

3D, in biology and quantitative cytology, in medical imaging, in aerial imaging and 

satellite, robotics and computer vision, non-destructive industrial testing, studies of 

documents and works of art. Outside the field of image processing, we find applications 

for example in data analysis, on data represented by graphs, hypergraphs, fuzzy sets, 

etc., in logic, or even in game theory. To detect the contour of an object, the procedure 

described in Figure 2.13 was followed. The steps taken will be set out in the following 

paragraphs. 
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Figure 2.13 Approved approach to detect the shape (border) of an object. 

2.2.3.1.2.1 Grayscale representation 

For edge detection, the grayscale representation of the color was used. Images are 

converted to grayscale for manipulation, where image data consists of a single channel 

representing the intensity, brightness, or density of the image. In most cases, positive 

values are those that make sense (e.g., the intensity of light). Typically, a grayscale image 

uses 8 bits (1 byte) per pixel and the range of intensity values is from [0-255], where the 

minimum range value represents the minimum brightness (Black), and the maximum 

value represents the maximum brightness. 

2.2.3.1.2.2 Binarisation 

This step is carried out to create a binary image where all cell contours are enclosed. 

Otsu's method  (Miss, Vola, & Baxi, 2013) was used to perform automatic thresholding  

from the shape of the image's histogram, or reduce a grayscale image to a binary image. 

The algorithm  assumes that the image to be binarized contains only two classes of 

pixels, (that is, the foreground and the background) and then calculates the optimal 

threshold that separates these two classes so that their intraclass variance is minimal. 

The name of this method comes from the name of its initiator,  Nobuyuki Otsu. 

Some cells are complete entities, while others have points in common with the edge of 

the image. To overcome the bias in the treatments and measurements that will result, 

a mathematical morphology operation, called "bwareaopen" (an operation that 

removes all connected components (objects) that have fewer P pixels of the binary 
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image, producing another binary image), is applied to eliminate connected objects that 

are very close to the cell and that have a smaller size (see Figure 2.14). 

 

Figure 2.14 Steps to Remove Unwanted Objects 

 

2.2.3.1.2.3 Populating regions and holes in the image 

A flood filling operation was used. This method conducts a fill operation on the 

background pixels of the input binary image to fill the item's hole from its precise 

positions before discarding any small existing objects in the image of the desired object. 

2.2.3.1.2.4 Using the dilation method 

The dilation calculates the maximum of the neighbors of each pixel and removes holes 

inside the object that are smaller than the structuring element (Gonzalez & Woods, 

2017). If we want to calculate an expansion of an image B by a structuring function A 

such that Z is the grayscale, the mathematical equation can be defined as follows: 

⨁� = ��|�� ∩  ≠ ∅� (2.1) 

It is the   boundary of the object using a matrix consisting of 0 and 1. A matrix 3×3 (see 

Figure 2.15) was used in such a way that it did not greatly widen the boundary of the 

object by adding only one pixel to the boundary. 
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Figure 2.15: Used Matrix for dilation 

 

2.2.3.1.2.5 Contour calculation 

Following dilation, the contour of the object is recognized by computing the difference 

between the two pictures before and after expansion, as shown in Figure 2.16 below: 

 

Figure 2.16 Edge Detection 

The method offers the advantage of being computationally efficient and operationally 

cost-effective, thus yielding closed contours for each cell. Furthermore, the provided 

contours are outside the cell and with a thickness of 1 pixel. 

Figure 2.17 illustrates the detailed approach to detecting the contour of an ROI. 
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Figure 2.17 The preprocessing steps for automatic contour extraction: (a) RGB image, 

(b) gray image, (c) binarization and hole filling, (d) dilation, and (e) contour extraction 

2.2.3.2 Automatic segmentation and Features extraction 

After presenting the contour extraction algorithm developed within this document, this 

section demonstrates its application in extracting features. The latter will be employed 

for identifying and characterizing the region of interest within an image. The goal of the 

segmentation method proposed in this chapter is to keep separately the information of 

each object (regardless its kind: Nosema or non-Nosema. Consequently, upon 

completing the segmentation, a vector encompassing all computed or extracted 

features is obtained. 

From the calculated shape/contour, two types of features were extracted: 

- Geometric features (six features) 

- Statistical features (three features) 

2.2.3.2.1 Geometric features  

The geometric aspects define the fundamental qualities of geometric shape. Their 

significance lies in the fact that, through numerous experiments, we have found them 

to consistently yield the best results. These parameters were used and defined in our 

work (Dghim, Travieso-Gonzáles, Dutta, & Hernández, 2020) respectively:  
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 Size/Perimeter provided that the Nosema cell has an elliptical shape, and the 

other items have distinct spherical forms. This elliptical perimeter calculation is 

based on the a and b variables, where a is the semi-major axis and b is the semi-

minor axis. The following equation gives the perimeter P: 

 The formula for Area A is as follows:  

A =  π ∙ � ∙ �  
(2.3)

 

 The Relation R is the quotient of the shape's height (H) and width (W): 

R =  H/W  (2.4)

 

 Equivalent diameter (D) is the diameter of a circle that has the same area as the 

item: 

 Solidity (S) is the fraction of the convex region contained in the item: 

S = Aconvex area (2.6) 

 Eccentricity (E) is defined as the ratio of the distance between the ellipse's foci 

to its major axis length: Let a be the semi-major axis and b be the semi-minor 

axis of the ellipse: 

  

E = 1 − ab (2.7) 

 

. =  π ∙ /2 ∙ 1�� + �2�  (2.2)

 

D = 44 × A7  (2.5)
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2.2.3.2.2 Statistic Features  

The remaining features 7, 8, and 9 were determined using the object's polar coordinates, 

namely the polar coordinates of a Cartesian point (x, y) (Dghim, Travieso-González, & 

Burget, 2021). Assume that a point M is located at such a distance (r) and in such a 

direction (θ) from the reference points. It is a boundary projection or one-dimensional 

representation. This is determined by calculating the distances from the object's 

centroid (center of "mass") to the border as a function of angles in any selected 

increment. When appropriately scaled, the resulting set of distances was the vector 

required as angle distances to the border pixel. Figure 2.18 shows the distribution of this 

distance for Nosema and non-Nosema object. 

 

Figure 2.18 Histograms describing the distribution of distances that flow from an 

object's centroid to each pixel of its shape in both cases Nosema and non-Nosema 

object for two examples of each type: this shows the large difference between the two 

types 

Following that, a value for these distances is shortened, and the nearest integers to a 

value are used to determine the three following respective parameters. 

 The standard deviation of these distances has been determined, resulting in 

feature number 7. Standard deviation is a measure of variability that 

E = /� × 12 − �2 (2.8)
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successfully normalizes the elements of N through the first array dimension 

whose size does not equal one; where P can be an array or a matrix and in 

this case is a vector of the radius values of the studied object's polar 

coordinates, and E is its mean. It is provided by Equation: 

89:. :<=>�9>?@ 1A2 = B1C ∙ DE.FG − HFI�J
GKL  

        

(2.9) 

  

  

 Variance derivate computes the difference and the closest derivative of the 

variance (X) for a vector X, which is [X (2) X(1) X(3) X(2)... X(n) X(n1)]. It is 

provided by the following equation: 

A� = 1ML − μ2 � +  1M� − μ2� + 1MO − μ2�+. . . +1MP − μ2�@  (2.10) 

 

2.2.3.2.3 Automatic segmentation and feature extraction from the texture of the color 

image:  

2.2.3.2.3.1 Extracting the characteristics of the color channels (six characteristics) 

The RGB object image is then used to extract further information regarding texture and 

color (Dghim, Travieso-González, & Burget, 2021). However, first, the item must be 

separated from its background in the image; to do so, follow these steps:  

1. The bounding box image was extracted based on shape characterization 

(calculated in the section of shape extraction).  

2. After converting the picture from RGB to HSV color spice, individual Hue (V), 

Saturation (S), and Value (V) channels were retrieved. 

3. Use the V mask to find the vibrant color. 

4. Concatenate the three new HSV channels by setting the H and S masks to 0 

and the V mask to 1.  
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5. Finally, transform the image back to RGB color to remove the object's 

backdrop, as illustrated in Figure 2.19: 

 

Figure 2.19 Extracting an object from its background. 

The texture parameters are 6 in number and quantify the entropy of the RGB and HSV 

channels; it may be characterized as a logarithmic measurement of the number of states 

having a substantial likelihood of being occupied.  The blue, red, green, and yellow 

channels are the input intensity images. Furthermore, the randomization of the Hue and 

saturation masks is determined. The value/lightness channel was removed because it 

provides no further information. 

Figure 2.20 shows the extracted channels for features calculation. 
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Figure 2.20 used images for entropy measurements for both Nosema cell and non-

Nosema cell: (a) extracted RGB object, (b) Red mask, (c) Green Mask, (d) Blue Mask, (e) 

yellow mask, (f) hue channel, and (g) saturation channel. 

Assume xi is the set of pixels in the image with the color/channel i, and p(xi) represents 

its probability. The following equation 11 is used to determine the six entropy 

parameters: 

H1MF2 = D .1MF2J
FKL ∙ Q?R�ES1MF2I. (2.11)

2.2.3.2.3.2 Feature extraction using the GLCM: (four characteristics) 

A) Concepts 

As mentioned before, (Dghim, Travieso-González, & Burget, 2021) Nosema cells tend to 

exhibit a more pronounced yellow hue internally. This observation prompted the 

utilization of a Grey Level Co-occurrence Matrix (GLCM) used on the yellow mask. This 

approach was employed to calculate additional texture information specific to the 

yellow color. The GLCM is a popular statistical approach for extracting textural features 

from microscopic images. It was employed in numerous feature extraction operations, 

such as feature skin extraction (Kolkur & kalbande, 2016) or plant disease feature 

extraction (Al-Hiary, Ahmed, Reyalat, Braik, & Alrahameh, 2011). As shown be (Rundo 
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et al., 2020), a novel strategy to compute the GLCM called HaraliCU can offload the 

computations into the Graphics Processing Units (GPU) cores, allowing to drastically 

reduce the running time required by the execution on Central Processing Units (CPUs). 

In (Rundo et al., 2021), an invented method called CHASM uses the previously 

mentioned HaraliCU method, a GPU-enabled approach capable of overcoming the 

issues of existing tools by efficiently computing the mappings of features for high-

resolution images with their full dynamics of grayscale levels, and CUDA-SOM, a GPU-

based execution of the SOMs for recognizing of clusters of pixels in the image. The 

statistical texture calculator's main rule states that they are determined from the 

statistical distribution of intensities measured at defined points relative to each other in 

the picture. Statistics are classified into first-order, second order, and higher-order 

statistics based on the number of pixels in each pair. The GLCM approach collects the 

statistical texture properties of the second order. Third and higher-order textures are 

theoretically conceivable but are seldom used because of the computational time 

requirements and difficulties in interpreting them (Mohanaiah, Sathyanarayana, & 

Gurukumar, 2013). 

B) Extracted features with GLCM 

The GLCM is a greyscale picture that I defined in Z. The grey level co-occurrence matrix 

is a square matrix Gd of size N, where N is the total number of grey levels in the picture. 

Gd's (i, j)th entry specifies the number of instances a pixel X with intensity value i splits 

from a pixel Y with intensity value j at a certain distance k in a specific direction d. Where 

k is a non-negative integer and d is described by d = (d1, d2, d3,... dn), where di 0, k, -k i 

= 1, 2, 3,... n (Sebastian, Unnikrishnan, & Balakrishnan, 2012). The Haralick GLCM was 

used to extract four characteristics from the picture of the yellow channel. The GLCM's 

most important qualities are contrast, correlation, energy, and homogeneity. 

T?@9U�V9 = D @� ∙ WD D S1>, Y2JZ
GKL

JZ
FKL [JZ\L

PK]  (2.12)

Correlation quantifies the linear relationship between the grey levels of surrounding 
pixels: 

 
 
 
 

T?UU<Q�9>?@ = 11A>. AY2 ∙ D D1> − ^>2 ∙ 1Y − ^Y2 ∙ .F,GGF   
(2.13)
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It is also known as the Angular Second Moment (ASM), and it is highly useful when two 

neighbor pixels are quite similar:  

 
 
 
 
 
 

When a local grey level is homogeneous, homogeneity is strong: 
 

2.3 Conclusion 

In this chapter, we introduced our segmentation algorithm. The general strategy of our 

method is to accomplish the final segmentation in two essential steps: 

1-Extract the clear and isolated objects that exist in the microscopic images: In this step 

we built our first DS1 database that contains the sub-images of Nosema objects and non-

Nosema objects. DS1 contains a total of 2000 RGB images: 1000 Nosema cells samples 

image and 1000 non-Nosema samples image. 

2-From the images of DS1: we calculated the attributes or features most relevant               

to the identification of its objects: these features are in the form of a vector of size 19 

for each object; and we have built the DS2 features dataset. Features calculation was 

done by the following two steps:   

2.1- Extract the contour of the object derived from the grayscale image 

and calculate its most relevant geometric and statistical characteristics.  

From this contour 9 characteristics were calculated. 

2.2- Extract the RGB object from its background and calculate its texture 

and color characteristics. 10 features were extracted from the texture of 

the studied objects. Figure 2.21 shows a backup extract of 19 calculated 

H@<UR_ =  D D S1>, Y2�JZ\L
GK]

JZ\L
FK]  (2.14)

`?a?R<@<>9_ = D D .1>, Y2 ∙GF
11 + 1> − Y2�  (2.15)
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features for both types of objects as an Excel file.  

 

Figure 2.21 DS2 Features Dataset stored files. 

The two datasets DS1 and DS2 built will be used in Chapter 3 for the recognition 

of Nosema cells following different strategies. 

The details of using these datasets for Nosema identification will be explained in 

the upcoming chapter. 
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3 Chapter III: Nosema recognition 
3.1 Introduction 

In the previous chapter, our research strategy focused on image segmentation, laying 

the groundwork for effective feature extraction. This chapter presents an approach 

specifically designed to identify Nosema cells and distinguish them from coexisting 

objects within the same microscopic image. The subsequent section directs attention to 

cell classification, exploring traditional object classification methods and their efficacy 

in categorizing cells. This analysis is then contrasted with the effectiveness of modern 

object classification techniques, including the application of classic methods such as 

Artificial Neural Networks (ANN) and Support Vector Machines (SVM), as well as 

contemporary techniques like Convolutional Neural Networks (CNN) and transfer 

learning, which have emerged within the domain of object classification. 

Moreover, the chapter involves testing and validating various architectures of transfer 

learning models for object recognition. The model demonstrating the highest accuracy 

will undergo retraining with Augmentation Data to enhance its precision in object 

recognition. Notably, ANN and SVM will leverage feature vectors extracted from the 

studied objects, while the second category of methods will employ RGB images of the 

objects under examination. 

This chapter emphasizes that cell recognition can be achieved through several methods. 

However, for comparison, we will unveil the most effective method for application 

identification. The strategy pursued for recognition is elucidated in Figure 3.1, providing 

a visual representation of the proposed approach.  
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Figure 3.1 The Implemented Methodology for Identification 

3.2 Artificial intelligence, machine learning, and deep learning  

In 2021, artificial intelligence continues to bring daily benefits to people: music 

recommendation systems, Google Maps, Uber, and many other applications are 

powered by artificial intelligence. However, there is confusion between the terms 

"artificial intelligence," "machine learning," and "deep learning." One of Google's most 

popular queries is, "Are artificial intelligence and machine learning the same thing?". Let 

us get it straight: Artificial intelligence, machine learning, and deep learning are three 

different things (Figure 3.2): 

• Artificial intelligence is a science like mathematics or biology. It studies ways to 

build intelligent programs and machines to solve problems creatively, which has always 

been considered a human prerogative. 

• Machine learning is a field of artificial intelligence that allows systems to learn and 

improve from experience without being explicitly programmed automatically. 
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• Deep learning is a sub-domain of machine learning, which uses neural networks to 

analyze different factors with a structure similar to the human neural system. 

 

Figure 3.2 A Venn diagram showing how deep learning is a kind of representational 

learning, which is in turn a kind of machine learning, used for many, but not all, 

approaches to artificial intelligence 

Many of artificial intelligence's early breakthroughs occurred in somewhat antiseptic 

and formal contexts, with computers having little awareness of the world. For example, 

IBM's Deep Blue chess engine defeated world champion Garry Kasparov in 1997 

(Campbell, Hoane, & Hsu, 2002). Chess is a fairly basic game. It only has sixty-four spaces 

and thirty-two pieces that can move restrictedly. Creating a good chess strategy is a 

fantastic accomplishment but not very difficult. In truth, there is minimal difficulty in 

expressing computer-related topics. Failures can be fully characterized by a very short 

number of perfectly formal rules, which the programmer can simply specify in advance. 

 

Ironically, the abstract and formal tasks that are among the most difficult mental tasks 

for a human being are among the easiest for a computer. While computers have long 

been able to beat even the best human chess player, it is only recently that they have 

reached a level of recognition of objects or speech comparable to that of a human being. 

A person's daily life necessitates a vast understanding of the globe. Much of this 

information is subjective and intuitive, making formal expression problematic. To act 
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intelligently, computers must capture this same knowledge. One of the main challenges 

of artificial intelligence is how to bring this informal knowledge into a computer. 

Several artificial intelligence projects have sought to hard-code knowledge about the 

world in formal languages. A computer can automatically reason about utterances in 

these languages by using logical inference rules. This is called the knowledge-based 

artificial intelligence approach. The difficulties faced by systems based on hard-coded 

knowledge suggest that artificial intelligence systems must be able to acquire their 

knowledge by extracting models from raw data. This capability is known as machine 

learning. Machine learning has enabled computers to solve challenges using real-world 

information and make judgments that appear subjective. A basic machine learning 

technique known as logistic regression can indicate whether a caesarean section should 

be recommended (Mor-Yousef et al., 1990). Another basic machine learning method, 

naive Bayes, may distinguish between valid and unwanted emails. 

The performance of these rudimentary machine learning algorithms is strongly 

dependent on the data representation provided to them. When logistic regression is 

used to propose a caesarean section, for example, the artificial intelligence system does 

not physically assess the patient. Instead, the doctor sends the system various relevant 

pieces of information, such as the existence or absence of a uterine scar. A characteristic 

is any piece of information contained in the patient's depiction. Logistic regression is 

used to discover how each of these patient features corresponds with different 

outcomes. It can, however, have no effect on how the qualities are specified. 

Many AI challenges may be accomplished by defining the correct collection of features 

to extract for that job and then feeding those characteristics into a basic machine 

learning algorithm. However, for many tasks, it is difficult to know what features need 

to be extracted. Assume someone wants to create software that detects vehicles in 

photos. We all know that autos have wheels; thus, the existence of a wheel might be 

employed as a feature. Unfortunately, describing the appearance of a wheel in terms of 

pixel values is challenging. Although a wheel has a simple physical shape, its picture may 

be complex. It is necessary to take into account, when describing the wheel, the 

shadows that fall on the wheel, the sun that glistens on the metal parts of the wheel, 

the wing of the car or an object in the foreground that obscures part of the wheel, etc. 
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One solution to this problem is to use machine learning to discover not only the 

correspondence between the representation and the output but also the representation 

itself. This approach is known as representational learning. The representations learned 

often give much better performances than those obtained with hand-designed 

representations. They also allow intelligent systems to quickly adapt to new tasks with 

minimal human intervention. A representation learning algorithm can discover a good 

set of characteristics for a simple task in a few minutes, while for a complex task, it can 

take a few hours or even a few months, depending on the complexity of the task. 

Designing features for a hard task by hand takes a long time and a lot of human labor; it 

might take decades for an entire community of scientists. 

Many aspects of variation impact every piece of data that may be seen, which is a 

primary source of difficulty in many real-world artificial intelligence (AI) applications. 

Individual pixels in a photograph of a red automobile, for example, can be extremely 

close to black at night. The shape of the car's silhouette is determined by the angle of 

vision. Most applications need to unravel the sources of variation and eliminate those 

that are irrelevant. In fact, extracting such high-level abstract qualities from raw data 

might be challenging. Many of these factors of variation, such as the accent of the 

speaker, can only be identified using a sophisticated understanding of the data at the 

human level. When obtaining a representation is nearly as complex as solving the actual 

problem, understanding representation does not appear to help us at first glance. 

Deep learning (DL) solves this central problem of learning representation by introducing 

representations that are expressed in terms of other simpler representations. DL allows 

the computer to construct complex concepts from simpler concepts. The prime example 

of a deep learning model is the Deep Neural Network (DNN) or Multilayer Perceptron 

(MLP). An MLP is just a mathematical function that maps a set of input values to output 

values. The function is formed by the composition of many simpler functions. It can be 

considered that each application of a different mathematical function provides a new 

representation of the input. 
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Deep learning is a machine learning approach that allows systems to improve with 

experience and data. It is the only viable approach to building intelligent systems that 

can operate in complex real-world environments. Indeed, DL is a special type of machine 

learning that achieves great power and flexibility by learning to represent the world as 

a nested hierarchy of concepts and representations, with each concept defined against 

simpler concepts and more abstract representations calculated based on less abstract 

concepts. 

3.3 Principles of classification 

3.3.1 Concepts 

Classification makes a direct use of computer-based learning methods. In artificial 

learning, there are usually several types of learning: 

 – Unsupervised learning 

– Supervised learning 

– Semi-supervised learning 

For all these learning methods, there is a set of observations {x1, · · ·, xn} ∈ X and a 

number of classes to be discriminated against by the classifier. Each observation is 

described by several characteristics. Unsupervised learning seeks to build a model 

directly from the data. The goal is to describe how the data is organized and to extract 

homogeneous subsets from the data. Unsupervised methods include hierarchical 

classification (Cormuéjols & Michet, 2002), self-organizing maps (Dreyfus & al., 2004), k-

means (Mitchell, 1997), etc. In supervised learning, in addition to observations, there 

are target values (or labels or membership classes) {yi} ∈ Y associated with these 

observations, where Y designs the set of possible classes. A model is then built that 

allows to estimate the dependencies between the sets X and Y. Supervised learning is 

called supervised learning because the elements of Y are used to guide the estimation 

process. Supervised methods include k-ppv (Kuncheva, 2014), neural networks (Dreyfus 

& al., 2004), support vector machines (SVM) (Abe, 2005), (Vapnik, 1995), and (Cristianini 

& Shawe-Tylor, 2000), decision trees (Quinlan, 1994), etc. As part of a semi-supervised 

learning (Zhou & Schokopf, 2004) and (Chapelle, Schölkopf, & Zien, 2006), among the 
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observations, only a small number of them have a label {yi}. The objective is then to seek 

to classify unlabeled observations. In this work, particular attention is put on supervised 

methods.  As such, below more details will be given about the principles of supervised 

methods.  

3.3.2 Supervised learning 

The generalization power of an artificial learning algorithm is dependent on the 

inductive process it performs and the space of H hypotheses. This space corresponds to 

the set of feasible decision functions. The inductive principle makes it possible to select 

in space hypotheses, from a set of data, those that best explain these data. These 

concepts represent the learning bias used by the artificial learner to produce a decision 

function with the best generalization capabilities (Cormuéjols & Michet, 2002). Let O be 

a population of objects, X the description space associated with these objects and o an 

oracle capable of performing a categorization of objects from O, denoted by the function 

fo: O → Y. Let fd: O → X a function that determines, for an object o ∈ O givens, its 

description x. From O, Y, fd and fo it is possible to define the space of the examples Z. An 

example z ∈ Z corresponding to an object o ∈ O is a pair of data (x, y) such that (x, y) = 

(fd(o), fo(o)). In supervised learning, it is important to look for a function f: X → Y which 

allows one to estimate the class y associated with x. f belongs to the hypothesis space 

H. The ideal case corresponds to fo = fd O f. Figure 3.3 summarizes all these notions. 

 

Figure 3.3 For a given learning problem, an object o ∈ O representative of this problem 

is described by a vector of attributes x ∈ X and is identified by the oracle o as a class y ∈ 

Y. In this diagram, fd and fo represent respectively the procedure performing the 

description of an object o and the decision-making process of the oracle o. The 

learner´s objective is to choose a hypothesis f∈ H whose predictions are as close as 

possible to the oracle 
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. 

 

3.4 Using of artificial neural networks and support vector machine for the 

identification problem 

3.4.1 Identification using artificial neural network 

3.4.1.1  Concepts 

In recent decades, ANN has emerged as an active area of study. To construct a 

"standard" neural network, neurons must create real-value activations, and the neural 

networks must react as predicted by modifying the weights. However, depending on the 

nature of the issue, the process of developing a neural network might include lengthy 

causal chains of computing operations. Retro-propagation is a fast gradient descent 

approach that has been used in neural networks since 1980. It enables supervised 

learning to be used to train ANNs. Although the training accuracy is good, the 

performance of backpropagation on test data may be inadequate. Because retro-

propagation is reliant on local gradient information with a random beginning point, the 

algorithm frequently gets stuck in local optima. Furthermore, if the amount of the 

training data is insufficient, neural networks will experience over-learning. 

A formal neuron can be considered as an elementary modeling of a biological neuron 

(Figure 3.4). The neuron receives as input a vector of numerical attributes presenting 

the description of an observation x, the elements of this vector xi are weighted by 

synaptic weights wi, a bias w0 is also added. The y-output    of the neuron is obtained by 

applying a transfer function also called activation function: 

� = D bFMF + b]   ,              _ = �1�2c
F  

 

 
(3.1) 
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Figure 3.4 Artificial neuron 

The artificial neural network (ANN) is a highly connected network of elementary 

processors (neurons) operating in parallel and having in layers. All neurons in the same 

layer have the same activation function. The learning of an ANN is most often done 

iteratively, by backpropagation of the error gradient, this very efficient learning 

algorithm gives an important boost to this classifier. The types of ANN are as numerous 

as their definition is general, they are distinguished globally by the function of activation 

of neurons (table 3-1), the architecture of the network (organized or not in layers, with 

or without cycles) and the mode of connectivity (fully or locally connected) (see Figure 

3.5). In the next part, we will quickly introduce the two most popular types of activation 

function: the Multi-Layer Perceptron (MLP) and the Radial Basis Function (RBF) network. 

Other types such as: convolutional networks, Kohonen map and polynomial networks 

are well described in (Touzet, 1992) and (Cheriet, Kharma, Lui, & Suen, 2007). An 

overview of the uses of Fuzzy Neural Networks (FNNs) in image processing is described 

in (Victor, 2020). 

 

Table 3-1: Some common transfer functions, x is the input vector 

Linear function ∑ bF. MFF + b]                         (3.2) 

Sigmoid function LLefgƛi                                    (3.3) 
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Tanh function f�i\Lf�ieL                              (3.4) 

Softmax function fi∑ fijj                                        (3.5) 

Radial basis function with center xc <MS k− ‖	\	m‖��n� o                        (3.6) 

 

 

Figure 3.5 Different neural network topologies. (a) multilayer networks, (b) local 

connections, (c) with recurring connections, and (d) full connections 

3.4.1.2 Activation functions 

The activation function of a single-layer network may be used to push each neuron's 

output towards a binary rank. However, in multi-layer neural networks, the activation 

function is even more essential. Even a massive multilayer neural network with a 

nonlinear activation function would only have the representational capability of a linear 

classifier, given the composition of linear functions is a linear function. As a result, the 

activation function p is a nonlinear function applied to a neuron's output to enable 

multilayer networks to learn complicated nonlinear functions. 

� = D bFMF + b]   ,              _ = �1�2c
F  

 

 
(3.7) 
 

Where wi is the input xi weight, f is an activation function, and w0 is the bias. This is 

commonly written more succinctly in matrix notation, where each neuron is made up of 

an input vector x = (x0,..., xN), a weight w = (w0,..., wN), and a bias b = w0, the output of 

which is, 
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_ = �1bqM + �2 

 

(3.8) 
 

Traditionally, in the study of neural networks, activation functions have been selected 

as sigmoid functions, that is, functions that translate negative inputs to negative outputs 

and positive inputs to positive outputs with a smooth transition around a = 0. This is a 

useful quality to have since the function still drives the network's outputs towards a 

binary ordering, the function is nonlinear (so the function's composition is not 

straightforward), and the function has well-defined gradients. The logistic function is an 

example of a regularly used sigmoid function: 

�1�2 = 11 + <\r 

 

(3.9) 
 

and the hyperbolic tangent, 

�1�2 = 9�@ℎ1�2 

 

(3.10) 
 

The fact that gradients are quite low in most of the function domain is one issue with 

sigmoidal activation functions. As a result, and in order to acquire superior empirical 

findings, current neural networks often employ the rectified linear unit (ReLU) activation 

function: 

�1�2 = a�M10, �2 (3.11) 
 

3.4.1.3 Multi-layers perceptron 

Multi-Layer Perceptron’s (MLPs), also known as Feedforward supervised neural 

networks, are the quintessence of deep networks. These are parametric functions 

defined by the composition of many parametric functions. Each of these component 

functions has multiple inputs and multiple outputs. Multilayer perceptron are the most 

popular and simple neural networks. These are direct propagation networks without a 

cycle, with at least one hidden layer (Figure 3.6), the neurons are usually completely 
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connected, and the transfer function is sigmoid (value in [0,1]), tanh (value in [-1,1]) or 

SoftMax type. 

 

Figure 3.6 Multi-Layer Perceptron with a Single Hidden 

In neural network terminology, we refer to each sub-function as a layer of the network, 

and each scalar output of one of these functions as a unit or sometimes as a 

characteristic. Even if each unit implements a relatively simple mapping or 

transformation of its input, the function represented by the entire network can become 

arbitrarily complex. 

This classifier has discovered applications in many areas such as character recognition, 

face recognition, prediction and more. It is remarkable performance, robust 

generalization capabilities, and swift decision-making phase have all contributed to its 

widespread adoption. Nonetheless, its utilization is associated with a set of challenges 

(over-learning, local minima, etc.). A detailed description of these problems is given in 

(Parisia, Kemkerb, Part, Kanan, & Wermtera, 2019). 

MLPs are also the key technology that underpins most contemporary business 

applications of deep learning for large data sets. Neural networks allow us to learn new 

types of non-linearity. Another way of looking at this idea is that neural networks allow 

us to learn the characteristics provided to a linear model. From this point of view, neural 

networks allow us to automate the design of features, a task that, until recently, was 

carried out gradually and collectively, thanks to the combined efforts of a whole 

community of researchers. MLPs have been among the first and most efficient of 

nonlinear learning algorithms (Rumelhart, Hinton, & Williams, 1986). These networks 

learn at least one function defining the characteristics, as well as a (typically linear) 

function for mapping the characteristics to the output. Layers in the network that match 
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characteristics rather than outputs are called hidden layers. This is because the correct 

values of the characteristics are unknown. The characteristics must be created by the 

learning algorithm. The input and output of the network are observed in the drive data. 

It should be noted that in the literature, DNNs can be confused with other deep learning 

models, but in most cases, DNNs refer to MLPs with more than one hidden layer. 

3.4.1.4 Number of hidden layers 

Research has demonstrated that neural networks with a minimum of one hidden 

(infinitely wide) layer are universal approximators. This signifies that such neural 

networks possess the theoretical capability to denote any function (Cybenko, 1989) and 

(Hormik, Stinchcombe, & White, 1989). This contrasts with the limits of neural networks 

that lack hidden layers. However, we discover that a network with just one hidden layer, 

even one with a very wide breadth, may learn to represent complicated functions just 

as effectively as networks with numerous hidden layers. Indeed, the discovery that 

networks that have several hidden layers, known as deep networks, continually 

outperform networks with only a few hidden layers, dubbed as shallow networks, 

represents a significant step forward in the improvement of neural network learning in 

recent years (Goodfellow, Bengio, & Courville, 2016). 

3.4.1.5 Radial Based Function  

RBF-like neural networks usually have a single hidden layer. The neurons in this layer are 

gaussian type and the neurons in the output layer are linear or any other function as for 

hidden markov model (HMMs). The learning of RBF neural networks is direct (Augustin, 

2001), it consists in learning the parameters of the output layer by the gradient descent 

method. The characteristics of Gaussian neurons are usually estimated at the beginning 

of the training (most often, by the clustering method) and they will then be frozen. In 

(Augustin, 2001), Augustine presents a comparison between HMM and RBF networks, 

he indicates that RBF networks do not always behave well in high-dimensional spaces 

with redundant and noisy dimensions, a problem that HMM is supposed to solve better. 

Furthermore, the algorithm for training a Radial Basis Function (RBF) demands a greater 

number of parameters than that of a Hidden Markov Model (HMM) for achieving 

equivalent performance. Consequently, a larger dataset is required. Additionally, the 
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count of hidden neurons could escalate exponentially in tandem with the increase in 

dimensions. However, an RBF network models the probability distributions of shapes 

conditionally to classes, which is more information than modeling the only 

neighborhood of decision boundaries like does HMM. 

3.4.1.6 Experimental methodology for artificial neural networks 

In the chapter before, existent items in Nosema illness microscopic pictures were 

discovered and extracted (both Nosema cells and other kinds of cells present in 

microscopic images). Their images were automatically segmented for feature 

calculation (geometric, texture, and statistical features), and the result was given as a 

vector of the 19 most significant features. 

As mentioned in the introduction, this chapter will focus on object classification 

between Nosema cells and non-Nosema cells, and a multilayer Neural Network system 

is the first approved tool for this purpose. To do this, the feature dataset DS2 is created 

once the features of the various objects have been retrieved. The DS2 has 38,000 values 

that represent 2000 pictures, each with 19 attributes that are distributed evenly 

between the two types of objects (Nosema objects/images and non-Nosema 

objects/images). This section of the task was quite computationally difficult, since the 

extraction of 2000 sub-images, together with the calculation of 19 characteristics for 

each picture, took several days of calculations on a CPU, namely a PcCom Basic Elite Pro 

Intel Core i7-9700/8GB/240SSD. 

Neural networks were utilized in this part of the study to detect Nosema illnesses in 

honeybees automatically. The neural networks demonstrated their worth in a variety of 

real-world applications, including classification tests. A neural network is often 

composed of two sets of functionalities: the first set is used to train the NN model, while 

the second set of testing functionality is used to evaluate the correctness or validity of 

the trained NN model. In the learning phase, computational units are connected to one 

another through weights, which serve the same role as the strengths of synaptic 

connections in biological organisms. Each input to a neuron is scaled with a weight, 

which affects the function computed at that unit. The artificial neural network computes 

a function of the inputs by propagating the computed values from the input neurons to 

the output neuron(s) and using the weights as intermediate parameters. The connection 
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weights were constantly updated and changed until they achieved the specified 

repetition number or the tolerable error. Thereby, the ANN model's capacity to respond 

appropriately was assured by utilizing the mean squared error (MSE) criteria to improve 

the reliability of the model between input and network output. 

As usual, during the experiment, the set of data was separated into two parts: learning 

and testing/validation of the model. The approved approach consists of conducting two 

experiments using the extracted features, and the goal of these two tests was to 

demonstrate the high presence of a yellow hue in Nosem's cell image. In the first one, 

the model was tested with only the first three kinds of extracted features (geometric, 

statistical, and texture features); that is, just 15 characteristics were used, not including 

the four yellow color features estimated using the GLCM. The second experiment was 

carried out by utilizing all 19 attributes. The studies were performed by varying the 

accuracy of the data split between training and testing data. The architecture of the 

applied Artificial Neural Network (ANN) comprised a singular hidden layer, with 

experimentation conducted on the count of neurons within this layer. Several repeats 

of the test (at least 30 times) were performed with each authorized hidden layer neuron 

number to get the ideal value of success recognition accuracy. Overall, the software was 

evaluated with a number of hidden layer neurons equal to the number of picture input 

characteristics retrieved (15 or 19), with weights inserted at random. The number of 

neurons in the hidden layer was then raised to 50 for the second test. The number of 

neurons was then raised by 50 in each successive trial until it reached 1800. Table 3-2 

and Figure 3.7 further clarify the experimentation process. 

A 10-cross-validation approach ranging from 10% to 90% for training and testing was 

used for statistical assessment. The output is a binary decision: [1 0] means a Nosema 

object, and [0 1] means a non-Nosema object. 

Table 3-2: Experiments for Nosema recognition using a vector of 15 features/19 features: 

the initial number of neurons in the hidden layer is 15/19 equals to the number of 

features and the final number is 1800 equal to the maximum number of training data 

Experiments for (15/19) Features Number of Neurons in the 

Hidden Layer 

Number of Experiment 

repetition 
Training Data Test Data 

10% 90%   
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20% 80%  

(15 o 19)->50->100->150->200-

--------500---------------1000-

------------------------------1700--

---17501800 

 

30 times repetition for 

every experiment 

30% 70% 

40% 60% 

50% 50% 

60% 40% 

70% 30% 

80% 20% 

90% 10% 

 

 

Figure 3.7 Implemented ANN for Nosema recognition 

3.4.2 Identification using SVM 

3.4.2.1 Concepts 

Within the realm of kernel methods, and drawing inspiration from Vladimir Vapnik's 

statistical learning theory, the most renowned family is that of Support Vector Machines 

(SVM). (Cortes & Vapnik, 1995). SVMs are binary classifiers by supervised learning 
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intended to solve problems of discrimination or regression (prediction). This method 

relies on using a nonlinear transformation to redescribe the training data in a larger 

space. Nonlinearly separable data in initial space will therefore be simpler to separate 

in large space. The objective is thus to ascertain, within the new re-description space, a 

hyperplane that optimally separates the training data. This concept is referred to as the 

notion of maximum margin. For simplicity, taking the case of linearly separable data. In 

SVM, the line used to separate classes is called hyperplane. 

The choice of the separator hyperplane is not obvious. There are indeed an infinite 

number of separator hyperplanes (see Figure 3.8), whose learning performance is 

identical, but the generalization performance can be very different. 

 

Figure 3.8 Basic principle of SVM (Russell & Norvig, 2011). (a) nonlinearly separable 

problem, the equation of the separator plane is x_1^2+x_2^2≤1(7); (b) projection of the 

data in a three-dimensional space () x_1^2, xx_2^2, √ (2x_1) x_2 (3.12) 

To address this issue, it has been demonstrated that there is a single optimal hyperplane 

defined as the hyperplane that maximizes the margin between the samples and the 

separator hyperplane (Cortes & Vapnik, 1995) (Figure 3.8(b)). For this purpose, only the 

points located on the hyperplanes of maximum margins called support vectors 

participate in the definition of the optimal hyperplane (Figure 3.9). 

In other words, only a small subset of data is needed for the calculation of the solution, 

the other samples do not participate in its definition. This is therefore effective in terms 

of complexity. On the other hand, changing or enlarging the training set has less 

influence than in Hidde Markov Model (HMM) classifier for example, where all the data 
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participates in the solution. Indeed, adding samples to the training set that are not 

support vectors has no influence on the final solution. 

 

Figure 3.9 Notion of maximum margin, for a set of linearly separable points, there are 

an infinite number of separator hyperplanes; the optimal hyperplane (in yellow) with 

the maximum margin, the surrounded samples represent the supporting vectors. 

For nonlinearly separable data, the idea of SVMs is to reconsider the problem in a higher-

dimensional space, possibly infinite-dimensional. In this new space, it is then likely that 

there is a linear separation hyperplane. However, the problem that arises is the 

determination of this hyperplane in a very large space. The solution is to use the "kernel 

trick" to determine the hyperplane that optimally separates the data in a very large 

space without the need to redescribe the data in it (Cervantes, Lamont, Mazahua, & 

Lopez, 2020). This solution is much less expensive than a scalar product in the 

redescription space. Commonly used kernel functions are: 

 linear kernel:                                u1M, MF2 = M. MF  (3.13) 

 Sigmoid kernel:                                 u1M, MF2 = 9�@ℎ1u. 1M. MF2 + v2 (3.14)  

 Nucleus polynomial:                                 u1M, MF2 = 1u. 11M. MF2 + 12w (3.15) 

 RBF kernel:                                     u1M, MF2 = <MS x‖	\	j‖��n� y    (3.16) 
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K, θ, p, σ are parameters of the kernels, whose determination and the choice of the 

kernel function are the responsibility of the user because there is no proven guide for 

any use. However, the polynomial kernel (Pk) and the RBF kernel (RBFK)are listed in 

(Cheriet, Kharma, Liu, & Suen, 2007) as the most performant kernel types for pattern 

recognition applications. In (Cervantes, Lamont, Mazahua, & Lopez, 2020), authors 

compare two combination strategies: "one against one" and "one against all."   

3.4.2.2 Experimental methodology for SVM 

The SVM method operates based on features and tries to find a decision model. As the 

complexity of SVM increases with the size of the learning base, its direct application 

without special precautions is difficult for classification. Indeed, this work's pixel 

database is extensive and highly redundant due to the similarity of many pixels within 

the same class. While an SVM can yield favorable classification rates, its decision 

function will necessitate querying for the classification of a considerable number of 

pixels when aiming to classify the pixels within a new image. This can become very 

disabling if we want quick segmentation. Subsequently, the method for constructing 

decision functions with reduced complexities for object classification was implemented. 

Each decision function will be optimized independently. To determine the best model 

θ∗ for each binary decision function, incorporating the desired settings for adjustment 

into this model is a requisite. To perform an object classification by a decision function, 

we used the data extracted in the previous chapter: 19 features for 2000 objects, which 

we introduced to our SVM model in the form of 38000 parameters. Then we selected 

the optimal hyperparameters by choosing the optimal values of C and θ after several 

tests as follows: C = 3 and θ= 5×10-5. 

3.5 Using of deep learning tools 

3.5.1 Concepts  

Deep learning emerged from research on artificial neural networks (ANN) (Geoffrey, 

Hinton, & Salakhutdinov, 2006). Authors developed a novel learning approach (named 

layer-wise-greedy-learning) in (Hinton, Osindero, & Teh, 2006), which marked the start 

of deep learning techniques. This algorithm's fundamental concept is based on 

unsupervised learning, which must be performed as a network pre-training step before 



                   
 Identification Of Nosema Cells Using Microscopic Images 

60 
 

subsequent layer-by-layer learning. By extracting characteristics from the inputs, the 

size of the data is reduced, and a compact representation is obtained. Then, by exporting 

the characteristics to the next layer, all the samples will be labeled, and the network will 

be refined with the labeled data. 

The popularity of deep learning can be attributed to two main factors: on the one hand, 

the development of large data analysis techniques indicates that the problem of 

overlearning of training data can be partially solved; on the other hand, the pre-training 

procedure before unsupervised learning will assign non-random initial values to the 

network. Therefore, a better local minimum can be achieved after the training process 

and a faster rate of convergence can be achieved. So far, deep learning research has 

received a lot of attention, and a number of intriguing outcomes have been discussed in 

the literature. Since 2009, the ImageNet competition has drawn a huge number of 

image-processing research organizations from academia and business across the world. 

Hinton's research group won the ImageNet competition in 2012 utilizing deep learning 

algorithms (Krizhevsky, Sutskever, & The, 2006). Hinton's group competed for the very 

first time, and its scores were 10% greater than those of second place. Google and Baidu 

have both modified their image search engines to include Hinton's deep learning 

architecture, which has resulted in significant gains in search accuracy. Baidu also 

founded the Institute of Deep Learning (IDL) in 2013 and appointed Andrew Ng, a 

Stanford University associate professor, as its head scientist. In March 2016, Google's 

deep learning team (named DeepMind) staged a Go Game match in South Korea 

between the ALPHAGO AI player and one of the world's greatest players, Lee Se-dol 

(Silver & al., 2016). AlphaGo, which used deep learning algorithms, demonstrated 

startling strength and defeated Lee Se-dol by a factor of four. Deep learning algorithms 

have also demonstrated an excellent ability to forecast the activity of new therapeutic 

compounds as well as the impact of non-coding DNA alterations on gene expression. 

With the fast growth of computational methods, ANN with deep architectures for 

supervised learning has given a strong framework. The deep learning method, overall, is 

made up of a hierarchical design with several layers, each of which is a nonlinear 

information processing unit. In this chapter, we will go through the deep architectures 

that we have employed in our research. 
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3.5.2 Convolutional Neural Network  

3.5.2.1 Concepts and history  

Convolutional CNNs are deep learning models that have demonstrated excellent 

performance in the processing of two-dimensional data with grid topologies, such as 

photos and movies (Arel, Rose, & Karnowski, 2010). CNN architecture is inspired on the 

arrangement of animal visual cortex. Hubel and Wiesel (Hubel & Wiesel, 1960) 

introduced the notion of receptive fields in the 1960s. They revealed that the intricate 

cell configurations were included in the animal visual cortex, which is in charge of 

detecting light in overlapping and tiny subregions of the visual field. Furthermore, the 

Neocognitron computational model with hierarchically ordered picture transformations 

was introduced in (Kunihiko,-Fukishima, & Miyales, 1982). However, the Neocognitron 

differs from CNN networks in that it does not require a shared weight. The concept of 

CNN networks is inspired by time delay neural networks (TDNN). In a TDNN network, 

weights are shared in a time dimension, resulting in a reduction in calculations. In CNN 

networks, convolution has replaced general matrix multiplication in standard neural 

networks. In this way, the number of weights is reduced, which decreases the 

complexity of the network. In addition, the images, as raw inputs, can be imported 

directly into the network, thus avoiding the procedure of extracting characteristics in 

the standard learning algorithms. It should be noted that CNN networks are the first 

truly successful deep-learning architecture thanks to the effective learning of 

hierarchical layers. CNN network topology exploits spatial relationships to reduce the 

number of parameters in the network, and performance is therefore improved by using 

standard backpropagation algorithms. Another advantage of the CNN model is that it 

requires minimal pre-processing. With the rapid development of computational 

techniques, GPU-accelerated computing techniques have been exploited to train CNNs 

more efficiently. Today, CNNs have already been successfully applied to handwriting 

recognition, face detection, behavior recognition, speech recognition, recommendation 

systems, image classification, and natural language processing. 
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Figure 3.10 A diagram of the convolutional neural network. (The depth of the matrices 

represents the number of used filters. The size of the output vector is determined after 

flattening the matrices of the previous layer and concatenating the resulting vectors. 

The absence of contact, the exchange of parameters, and equivocal representation all 

play important roles in the training process of a CNN (Gonzalez & Wood, 1993). Unlike 

traditional neural networks where the relationship between input and output units is 

derived by matrix multiplication, CNN networks reduce computational overhead 

through low interaction where kernels are made smaller than inputs and used for the 

entire image. The basic idea of sharing parameters is that instead of learning a separate 

set of parameters at each location, we only need to learn one set of these parameters, 

which implies better CNN performance. Parameter sharing has also given CNN an 

attractive property called equivariance, which means that every time the input changes, 

the output changes in the same way. As a result, fewer parameters are needed for CNN 

compared to other traditional neural network algorithms, resulting in a reduction in 

memory and an improvement in efficiency. A conceptual diagram of a standard CNN is 

shown in Figure 3.11. 
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Figure 3.11 A conceptual diagram of the convolutional neural network using three 

filters. 

As shown in Figure 3.11, CNN is a multilayer neural network that consists of two different 

types of layers, namely convolution layers and pooling layers (Krizhevsky, Suskever, & 

The, 2006), (Goodfellow, Bengio, & Courville, 2016), and (Deng, 2012). The convolution 

and pooling layers are connected alternately and form the central part of the network. 

In the first convolution layer, the input picture is convoluted using filters that may be 

learned at all conceivable offsets to yield feature maps, as illustrated in Figure 3.10. Each 

filter contains a connection weight layer. Typically, four feature map pixels make a 

group. These pixels generate extra feature maps in the first pooling layer after passing 

through a sigmoid function. This method is repeated until we have the feature maps in 

the subsequent convolution and subsampling layers. Finally, the pixels' values are 

simplified into a single vector that will be used as input to the MLP network (Arel, Rose, 

& Karnowski, 2010).  

Convolution layers are often employed to extract features when the input of each 

neuron is connected to the preceding layer's local receptive field. After obtaining all of 

the local features, the position connection between them may be calculated. A 

subsampling layer is required for feature mapping. These weighted feature mapping 

layers create a plane. Because of its minor impact on the function's core, the sigmoid 

function is chosen as the activation function to provide scale invariance. It must 
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additionally be mentioned that the filters in this model link a series of overlapping 

receptive fields and turn the 2D picture batch input into a single unit in the output. 

However, when the dimension of the inputs is equivalent to the dimension of the filter 

output, it will be difficult to preserve translation invariance with more filters. Using a 

classifier might result in over-learning due to the high dimensionality. To address this 

issue, a pooling procedure known as subsampling is used to minimize the total size of 

the signal. Subsampling has already been used successfully in audio compression to 

reduce data size. Subsampling was also employed in the 2D filter to improve position 

invariance. 

A CNN's training technique is identical to that of a normal neural network, which uses 

retro-propagation. (Bengio, 2009) used an error gradient to generate CNNs. The 

information is pushed forward through multiple levels in the first stage. By adding digital 

filters to each layer, the main features are obtained. After that, the output values are 

computed. The error over the predicted values and the actual value of the output is 

computed in the second phase. Subsequently, the weight matrix is fine-tuned to 

minimize this error, leading to the refinement of the network. In contrast to other 

conventional image classification algorithms, CNNs don't often necessitate pre-

processing. It is sufficient to train the filters in CNNs rather than establishing parameters, 

as is the case with classic neural networks. Furthermore, CNNs are independent of past 

information and human influence in the extraction of attributes. The max-pooling 

approach for subsampling was proposed in LeNets in 1998 (Lucun, Bottou, Bengio, & 

Haffner, 1998). A pooling function is used to substitute the network output at a certain 

point by summing the statistics of the neighboring outputs. We may acquire the 

maximum output in a rectangle neighborhood by using the max-pooling approach. The 

pooling approach can also make the representation insensitive to input translations. 

Adding a max-pooling layer between convolutional layers now enhances spatial 

abstraction as feature abstraction grows. Pooling, as indicated in (Boureau, Ponce, & 

Lecun, 2010), is used to achieve invariance in picture modifications. This method allows 

for increased noise resilience. It is stated that the performance of the various pooling 

methods is dependent on numerous parameters, such as the resolution at which the 

low-level components are retrieved and the linkages between the sample's cardinalities. 
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Boureau (Boureau, Le Roux, Bach, Ponce, & Lecun, 2011) discovered that while the traits 

are highly varied, they may be grouped together as long as their locations are near. 

Furthermore, it has been observed that doing the pooling before to the pooling phase 

results in improved performance. It is demonstrated by (Jia, Huang, & Darrell, 2012) that 

greater pooling performance may be obtained by learning receptive fields in a more 

adaptable way. Particularly an efficient learning algorithm based on an incremental 

selection of features is presented to accelerate the training process utilizing the idea of 

over-skill. 

3.5.2.2 Experimental methodology: 

The CNN architecture employed consists of three distinct blocks. The first convolutional 

block comprises two convolutional layers with kernel 3 × 3 × 32 filters, an activation layer 

ReLU, and a batch normalization layer (batch_normalization) to standardize the inputs. 

To speed up the training process and improve the performance of the CNN, we applied 

a 2 × 2 max_pooling and dropout layers technique to randomly disconnect nodes from 

the current layer to the next layer to decrease overfitting. As a result, increasing the 

number of filters deepens the network. The second block contains one convolutional 

layer with 3x3x64, followed by ReLU and batch normalization. The third block includes 

one convolutional layer with 3x3x64, followed by max_pooling and dropout layers. Table 

3-3 shows the architecture utilized for an 80x80 input picture of three RGB channels. 

This architecture is described in Figure 3.12. 

 

Figure 3.12 Implemented CNN for Nosema Recognition 



                   
 Identification Of Nosema Cells Using Microscopic Images 

66 
 

 

Table 3-3: CNN experiment Values for an 80 × 80 input image 

 

3.5.3 The use of Transfer learning architectures 

3.5.3.1 Concepts 

Transfer Learning refers to the set of methods that allow the transfer of knowledge 

acquired from the resolution of given problems to deal with another problem. 

With the ascent of Deep Learning, Transfer Learning has achieved remarkable success. 

Frequently, models employed in this domain demand extensive computation time and 

substantial resources. However, using pre-trained models as a starting point, Transfer 

Learning makes it possible to quickly develop high-performance models and effectively 

solve complex problems in Computer Vision or Natural Language Processing, NLP 

(Lezory & Cardot, 2002). 

Transfer learning corresponds to the ability to use existing knowledge, developed for 

the solution of given problems, to solve a new problem. Transfer Learning is based on a 

simple idea, that of re-exploiting the knowledge acquired in other configurations 

(sources) for the solution of a particular problem (target), (Figure 3.13). 

Layer Type Output Shape Number of 

Parameters 

conv2d (Conv2D) (None, 80, 80, 32) 896 

batch_normalization (BatchNo) (None, 80, 80, 32) 128 

conv2d_1 (Conv2D) (None, 80, 80, 32) 9248 

batch_normalization_1 (Batch) (None, 80, 80, 32) 128 

max_pooling2d 

(MaxPooling2D) 

(None, 80, 80, 32) 0 

dropout (Dropout) (None, 80, 80, 32) 0 

conv2d_2 (Conv2D) (None, 80, 80, 64) 18,496 

batch_normalization_2 (Batch) (None, 40, 40, 64) 256 

conv2d_3 (Conv2D) (None, 40, 40, 64) 36,928 

batch_normalization_3 (Batch) (None, 40, 40, 64) 256 

max_pooling2d_1 

(MaxPooling2) 

(None, 40, 40, 64) 0 

dropout_1 (Dropout) (None, 40, 40, 64) 0 



                   
 Identification Of Nosema Cells Using Microscopic Images 

67 
 

 

Figure 3.13 Traditional approach vs. Transfer learning approach 

A domain D is defined by two parts: a feature space X and a marginal probability 

distribution P(X), where X = {x1, ..., xn} ∈ Y, where Y is the possible features of the space. 

Let’s say DS is the source domain, DT is the target domain, TS is the source task, TT is the 

target task, and (f) is the predictive function. Transfer learning improves the target 

predictive function (f)T by using the related information from DS and TS, where DS ≠ DT 

or TS ≠ TT. The single source domain defined here can be extended to multiple source 

domains. Given the definition of transfer learning, since DS = {YS, P(XS)} and DT = {YT, 

P(XT)}, the condition where DS ≠ DT means that YS ≠ YT and/or P(XS) ≠ P(XT). The case 

where YS ≠ YT concerning transfer learning is defined as heterogeneous transfer learning. 

The case where YS = YT concerning transfer learning is defined as homogeneous transfer 

learning. Heterogeneous transfer learning occurs when the source software project has 

different metrics (features) than the target software project. Alternatively, 

homogeneous transfer learning occurs when the software metrics are the same for the 

source and the target software projects. Continuing with the definition of transfer 

learning, the case where P(XS) ≠ P(XT) means the marginal distributions in the input 

spaces are different between the source and the target domains. Shimodaira (Zhuang et 

al., 2021) demonstrated that a learner trained with a given source domain will not 

perform optimally on a target domain when the marginal distributions of the input 

domains are different. 

In this context, many techniques may be identified based on what one desires to 

transfer, when, and how the transfer should be carried out. Overall, there are three 

forms of Transfer Learning: 
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 Inductive Transfer Learning 

The source and target domains are the same (same data) in this arrangement, while the 

source and target tasks are different yet nearby. The objective is to leverage current 

models to minimize the scope of prospective models' applications (model bias).. For 

example, it is possible to use a trained model for the detection of animals on images to 

build a model capable of identifying dogs. 

 Unsupervised Transfer Learning 

The source and target domains are comparable, as in inductive transfer learning, but 

the tasks are not. However, neither domain's data is labeled. 

It is frequently faster to get huge volumes of unlabeled data, such as through databases 

and web-based sources, than labeled data. As a result, there is a lot of interest in the 

notion of combining unsupervised learning with transfer learning. 

As an example, self-taught clustering is an approach that allows you to cluster small 

collections of unlabeled target data, with the help of a large amount of unlabeled source 

data. This approach is more efficient than the state-of-the-art approaches traditionally 

used when the target data is labeled in an irrelevant way. 

 Transductive Transfer Learning: 

The source and target tasks are comparable in this design, but the related domains differ 

in terms of data or marginal probability distributions.  

For instance, the NLP models used for morpho-syntactic word tagging, Part-Of-Speech 

Tagger (POS Tagger), are often trained and evaluated using Wall Street Journal news 

data. They can be tailored to data from social networks, which material differs but is 

similar to that of newspapers. 

3.5.3.2 Transfer learning resolves deep learning problems 

These models, in general, relate to high-performance algorithms that have been created 

and trained on huge databases and are now openly available. We can differentiate two 

tactics in this context: 

3.5.3.2.1 Using pre-trained models as feature extractors 

Deep learning models frequently use a tiered stack of neurons as its architecture. 

Depending on the level at which they are positioned, these layers learn distinct 
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properties. In the case of supervised learning, the last layer (typically a fully linked layer) 

is employed to obtain the final output. As a result, the goal is to reuse a pre-trained 

network without its final layer. This new network then serves as an extractor of fixed 

characteristics for the accomplishment of additional tasks. In our case we will use the 

second strategy that will be described in the following paragraph. 

3.5.3.2.2 Adjusting pre-trained models 

This is a more complex technique, in which not only is the last layer replaced to perform 

classification or regression, but other layers are also selectively re-training. Indeed, deep 

neural networks are highly configurable architectures with various hyperparameters. In 

addition, while the first layers capture the generic characteristics, the last layers focus 

more on the specific task at hand. 

The concept is thus to immobilize (i.e., fix the weights) of certain layers during training 

and refine the rest to answer the problem. This strategy makes it possible to reuse 

knowledge in terms of the overall architecture of the network and to exploit its states 

as a starting point for training. It therefore makes it possible to obtain better 

performance with a shorter training time. 

The figure below summarizes the main transfer learning approaches commonly used in 

deep learning. 

 

Figure 3.14 Deep transfer learning approach 



                   
 Identification Of Nosema Cells Using Microscopic Images 

70 
 

ImageNet is a database of images freely accessible (under conditions) online. This 

database contains 14 million images divided into 1000 categories. Since 2010, a machine 

learning competition has been ongoing, dedicated to assessing the most effective image 

processing algorithms using the ImageNet dataset. The name of this competition is 

ILSVRC. Since 2012, the year of the first convolutional deep neural network (AlexNet), 

all the winners have been using Deep Learning. Testing the new neural network 

architectures on the ImageNet dataset is customary. This is precisely what Microsoft 

accomplished with their architecture known as ResNet (He, K. & al.). ResNet networks 

perform very well on ImageNet (>93%). There are several variations of ResNet(s) 

depending on their depth. The teams that created ResNet made their work and results 

generally available. This allows us to benefit from it to do transfer learning. 

Hence, ResNet allows everyone to leverage its capabilities for image classification 

without requiring millions of images or extensive computational efforts. 

For simplicity, replace the last layer(s) of the ResNet network with a layer dedicated to 

your problem and train the network on your data while keeping (in part) the weights 

calculated by ResNet. ResNet is one of many architectures that can benefit from it. Many 

others exist, such as AlexNet, Xception, VGG16, VGG19, ... DenseNet, NASN and all 

trained-on ImageNet. 

3.5.3.3 Application of transfer learning in the real world 

The deep-learning-based approaches such as (Long, Cao, Wang, & Jordan, 2015), (Sun & 

Saenko, 2016), (Ganin & Lempitsky, 2015), and (Ganin & al., 2016) are applied to solving 

image classification problems, Alzheimer detection by fine-tuning AlexNet architecture 

(Maqsood & al., 2019) and (Marcus, Fotenos, Csernansky, Moris, &Bucknet, 2010).  Also, 

the are widely applied to resolve problems in several domains like: 

Medical applications: In (Shin & al., 2016) have refined the pre-trained deep neural 

network to solve computer-aided detection problems.  In (Byra, & al., 2020) used 

transfer learning to help assess knee osteoarthritis. In (Tang, Du, Huang, Wang, & Zhang, 

2019) active learning and domain adaptation technologies were combined for the 

classification of various medical data. Also, in (Zeng & al., 2019) transfer learning was 

used to automatically describe a patient's diagnosis. 
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Bioinformatics Applications: Transfer learning can be applied to facilitate biological 

sequence analysis by understanding the behavior of one organism and transferring it to 

the others organism like in (Schweikert, Ratsch, Widmer, & Scholkopf, 2008), it can also 

help on problems of organism classification like in (Huang, Smola, Gretton, Borgwardt, 

& Schölkopf, 2006) and (daumé III, 2007).  In addition, transfer learning tool are widely 

used in gene expression analysis and association predictions between genes and 

phenotypes like in (Petegrosso, Park, Hwang, & Kuang, 2016), (Huang & Kuang, 2010), 

(Xu, Xiang, & Yang, 2010) and (Singh & Gordon, 2008). 

Transportation applications: Transfer learning is applied in the field of transport in 

order to understand images of traffic scenes. in (Di & al., 2018) a solution has been 

proposed to solve the problem related to traffic images taken from a certain location 

and which often suffer from variations due to different weather and light conditions. 

Transfer learning is also applied to the task of modeling driver behavior. For example, in 

(Lu & al., 2020) an approach has been proposed to adapt the driver model in lane change 

scenarios.  In (Liu, Lasang, Pranata, Shen, & Zhang, 2019) applied transfer learning to 

recognize driver poses.  In (Wang, Zheng, Huang, & Ding, 2018) authors adopted a 

regularization technique using transfer learning for vehicle type recognition. Transfer 

learning can also be used for the detection of abnormal vehicle movements as in 

(Gopalakrishnan, Khaitan, Choudhary, & Agrawal, 2017) and (Bansod & Nandedkar, 

2019). 

A diverse array of applications has employed transfer learning to address prevailing 

issues, and we have aimed to highlight the most significant among them. In the context 

of identifying Nosema images, or more precisely, classifying images as either Nosema or 

non-Nosema, the selected architectures were AlexNet, VGG16, and VGG19. For these 

three architectures we will use the DS1 image database, we will fine-tune each model 

and then retrain it on our DS1, and finally show and discuss the results. 

3.5.3.3.1 Fine-tuning AlexNet transfer learning model 

3.5.3.3.1.1 Concepts 

AlexNet, which was first proposed by Alex Krizhevsky & al. in the 2012 ImageNet Large 

Scale Visual Recognition Challenge (Krizhevsky, A. & al, 2017). It is a simple CNN 
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architecture that consists mainly of five convolutional layers: the first four layers are 

followed by the pooling layer and the fifth layer is followed by three fully connected 

layers (FCN). Figure 3.15 Describes the Architecture of AlexNet model. 

 

Figure 3.15 AlexNet Architecture 

The non-linearity layer of ReLU is from the following equation: 

                               �1M2 = a�M1M, 02  (3.17) 

It is a half-wave rectifier function, which can significantly accelerate the learning phase 

and avoid overlearning. The abandonment regularization technique consists of the stall 

that stochastically defines several input neurons or hidden neurons to zero to reduce 

the co-adaptations of neurons, which are typically used in fully connected layers of the 

AlexNet architecture. The ReLU non-linearity layer and the abandonment regularization 

technique are the reasons for AlexNet's success. 
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3.5.3.3.1.2 Experimental methodology for fine-tuned AlexNet model 

AlexNet's model has 25 layers, includes over a million photos, and can categorize 1000 

categories. To train this model on our dataset of images, the following steps were 

adhered to: 

1-Partition of the input data into separate sets for training and validation. The dataset 

was divided into learning and validation sections based on four cross-validation folders.  

2-The input data is organized into two labeled folders: the Nosema cell images class and 

the non-Nosema objects images class.  

3-RGB images are automatically resized to 277×277 in the model augmentation phase 

since AlexNet only accepts this dimension of images. 

4-The AlexNet pre-trained model's last three layers have been replaced: layer 23 with a 

fully connected layer, layer 24 with a softmax layer, and layer 25 with a classification 

output layer. 

5-The last classification layer has been modified to identify two image classes, the 

Nosema class, and the non-Nosema class, instead of 1000 classes. 

6-Finally, following the regularization of training options, a series of experiments were 

conducted to attain the optimal outcome. 

 

Figure 3.16 Fine-tuned AlexNet Model for DS1 images classification 
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Table 3-4 below illustrates the training options finally chosen to train AlexNet according 

to our images: 

Table 3-4: Experimental setting for retrained AlexNet model 

  

 

 

3.5.3.3.2 Fine-tuning VGG16 and VGG19 transfer learning models 

K. Simonyan and A. Zisserman proposed VGG16 from the University of Oxford in the 

paper "Very Deep Convolutional Networks for Large-Scale Image Recognition." The 

model achieves 92.70% top-5 test accuracy in ImageNet. VGG-16 and VGG-19 are 

convolutional neural networks trained on more than one million images in the ImageNet 

database. Both networks possess the ability to classify images across 1,000 object 

classes. Furthermore, they share an image input size of 224 by 224 pixels. The concept 

of the VGG19 is the same as that of the VGG16, except that the VGG16 network has a 

depth of 16 layers, and the VGG19 has 19 layers. However, the two x-arrays of 

convolutional neurons are used to analyze the image object. The following image 

illustrates the general architecture of the VGG16 network. The VGG19 network follows 

a similar architecture, except for featuring three additional convolutional layers 

compared to VGG16. 

 

Model Parameters Setting Values 

AlexNet Learning algorithm Sgdm 

Initial Learning Rate 0.001 

Mini-batchsize 64 

Maximum epochs 20 
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Figure 3.17 VGG16 Architecture 

The fine-tuning procedures for both models mirror those of AlexNet, albeit with 

variations in terms of the input image types and the specific layers to be modified: 

1-Partition the input data into two parts. The dataset was divided into learning and 

validation sections based on four cross-validation folders. 

2-The input data is organized in two labeled folders: one for the images class of 

Nosema cells and the other for the images class of non-Nosema objects. 

3-RGB or gray images are automatically resized to 224×224 in the model 

augmentation phase since VGG16 and VGG19 only accept this dimension of images. 

4-For VGG16, the network contains a total of 41; layers numbers 39, 40, and 41 have 

been replaced by a fully connected layer that supports classification between two 

classes (Nosema classes and non-Nosema classes) and a classification output layer. 

5-For VGG19, which contains a total of 47 layers, layer 45 has been replaced by a 

fully connected layer to classify two classes of objects, and layer number 47 (the 

softmax layer) has been replaced by a classification layer. 

6-Finally, several experiments were carried out after the regularization of the 

training options to obtain the optimal result. 

The following two figures (Figure 3.18 and Figure 3.19) describe the two models after 

their modifications. 
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Figure 3.18 The Fine-Tuned VGG16 Model for Nosema Recognition 

 

 

Figure 3.19 The Fine-Tuned VGG19 Model for Nosema Recognition 

Table 3-5 below describes the choice of training parameters of two models. 
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Table 3-5: Experiment for VGG16 and VGG19 fine-tuned models 

 

3.6 Recognition result 

Next, the detailed description of our classification approach is in the preceding part; the 

next section will disclose the results of its application on the DS1 and DS2 datasets. 

This chapter aims to compare the outcomes of traditional approaches to classification 

methods with those provided by sophisticated transfer learning techniques. The 

presentation begins with the results of applying ANN and SVM based on the computed 

characteristics of DS1 and the results of CNN and the re-trained models AlexNet, VGG16, 

and VGG19 based on DS2 pictures. The results of the authorized classification 

techniques will then be shown and examined.  

3.6.1. Results of classification with ANN and SVM: The use of DS1 

The use of the DS2 characteristics database for object classification was made using two 

strategies. The first technique involves testing the 15 geometric, static, and textural 

characteristics without considering the four yellow color features generated by the 

GLCM, whereas the second consists of trying all 19 characteristics. This procedure aims 

to demonstrate the significant presence of a yellow hue within Nosema cells. This 

validates the rationale behind calculating the GLM features for this specific color from 

the outset. The results of the two classifiers, ANN and SVM, are presented in Table 3-6 

below. 

Table 3-6: Best recognition results given by ANN and SVM 

Number of 

Features 

Classifier Accuracy Observation 

15 Features ANN 79.00% For 1400 neurons in the hidden layer 

SVM 81.00% Using kernel RBF 

19 Features ANN 83.20% For 1400 neurons in the hidden layer 

SVM 83.50% Using kernel RBF 

 

Model Parameters Setting Values 

VGG-16 and VGG-19 Learning algorithm Adam 

Initial Learning rate 0.0004 

Mini-batch size 10 

Maximum epochs 25 

Validation Frequency 3 

Validation Information Test-Images 
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It is worth noting that the results produced by combining all of the estimated 

characteristics (19 features) outperform those obtained by the 15 features. 

Furthermore, around 1400 neurons in the neural network's buried layer provide the best 

results for all studies. Indeed, the precision of the outcome is improved by utilizing GLCM 

properties of the yellow hue. 

Figure 3.20 depicts the ANN's most excellent accuracy in a confusion matrix (Dghim, 

Travieso-González, Dutta, & Hernández, 2020). 

 

Figure 3.20 Best result accuracy given by the implemented ANN 

3.6.2. Results of classification with CNN and transfer learning: the use of DS2 

3.6.2.1. CNN result 

CNNs had an accuracy rate of 92.50%. It outperforms the ANN and SVM techniques. The 

first block differentiates this type of neural network since it works as a feature extractor. 

It does this by incorporating convolutional filtering algorithms with template matching. 
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The first layer filters the image with numerous convolution kernels and creates "feature 

maps" normalized through an activation function (see Figure 3.21).  

 

 

Figure 3.21 Example of the output of the first layer 

This operation can be repeated as many times as necessary: the feature maps obtained 

with new kernels are filtered, providing new feature maps for normalization and 

resizing. These can then be filtered further, resulting in a recurrent cycle. Finally, the 

latest feature map values are concatenated into a vector. This vector determines the 

first block's output and the second block's input. 

The second block lacks distinguishing CNN characteristics: It is usually found near the 

end of all neural networks used for classification. The values of the input vector are 

changed (through numerous linear combinations and activation functions) to generate 

a new output vector. This final vector has as many components as classes; the element 

i represents the probability that the image belongs to class i. As a result, each element 

is between 0 and 1, and the total is 1. The last layer of this block (and hence of the 

network) computes these probabilities as an activation function using a logistic function 

(binary classification) or a SoftMax function (multi-class classification). 
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The parameters of the layers, like those of ordinary neural networks, are determined 

using gradient backpropagation; cross-entropy is reduced during the training phase. 

However, in the case of CNNs, these parameters are particular to picture properties. 

3.6.2.2. Transfer learning results 

3.6.2.2.1. Result for AlexNet 

The findings achieved after applying the transfer learning methods to categorize two 

sorts of objects or Nosema object recognition, are presented in the table below. Table 

3-7 provides the most significant findings, i.e., those with the highest occurrences, which 

are as follows: 50%, 60%, 70%, and 80% for training and the others for testing. 

Table 3-7: Best classifications results for AlexNet fine-tuned classifier 

Trained Data Validation Data Accuracy Epochs Number 

0.5 0.5 84.58% 6 

0.6 0.4 83.98% 6 

0.7 0.3 86.98% 6 

0.8 0.2 85.28% 6 

 

The experiment using 70% training data and 30% validation data, and a number of 

epochs equal to 6 yields the best accuracy result, as shown in table 3-7. The number of 

epochs was increased in the following experiment. However, six epochs consistently 

delivered the best accuracy. 

3.6.2.2.2. Results for VGG16 and VGG19 

The findings of the retrained VGG16 and VGG19 models for the three most significant 

trials are shown in Tables 3-8. The best accuracy attained by a VGG16 fine-tuned model 

is 96.25% when the data is divided into 80% for training and 20% for testing, as shown 

below. 

Table 3-8: Best classifications results for VGG16 and VGG19 fine-tuned classifiers 

Experiments Epochs Accuracy 

VGG-16 VGG-19 

0.7 6 76.29% 71.95% 

 6 92.50% 93.00% 

08 12 94.50% 82.00% 

20 96.25% 92.32% 

25 93.00% 93.50% 

0.9 6 88.00% 77.00% 



                   
 Identification Of Nosema Cells Using Microscopic Images 

81 
 

 

These findings are depicted in the figures below: 

 

Figure 3.22 Best simulation results for VGG16 (a) and VGG19 (b): 70% of data for 

training and 30% of data for validation with 6 epochs. 

 

 

Figure 3.23  Best simulation result of VGG16 (a) and VGG19 (b): for 80% for training 

and 20% for validation and with 20 epochs for VGG16 and 25 epochs for VGG19. 
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Figure 3.24 Best simulation result of VGG16 (a) and VGG19 (b): for 90% for training and 

10% for validation, with 6 epochs for VGG16 and 30 epochs for VGG19 

As indicated in Table 3-8, VGG16 demonstrated competence in picture classification 

between Nosema and non-Nosema images with a success accuracy of 96.25% (see 

Figure 3.25). 
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Figure 3.25 Best succès accuracy (96.25%) given by VGG16 fine-tuned model 

3.7 Discussion 

In addition, we have included contemporary research in the bibliography that uses 

chemical simulations and powerful technical devices to identify bee illnesses or 

disturbances inside bee colonies. In this section, we evaluate our provided method and 

compare it to earlier efforts in the literature that exclusively employed image processing 

and computer vision techniques to identify and recognize Nosema spores.  

Table 3-9: Comparison of proposed method with existed method in the literature using 

different image processing tools (%) 

Authors Year Methods Dataset Accuracy 

Alvarez-Ramos, 

Niño, & Santos, 

2013 

  2013 Nosema classification : 

SIFT+SVM 

- - 

Patricio-Nicolas, 

Mauro-German, 

Sergio-Damián, 

           

2016 

Nosema counting 

predefined functions in 

the OpenCV Library 

12 

microscopic 

images 

92.00% 
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This part is dedicated to evaluating the implemented approach and carrying out various 

comparisons with those previously described in the literature. 

The comparison of the methodologies used in this study to cutting-edge approaches 

highlights their effectiveness. As seen in the table above, the findings described in this 

PhD document surpass those reported in the literature. This is explained by the 

suggested model's ability to extract characteristics from microscopic images of Nosema 

illness and the performance of the classifiers utilized. 

In (Alvarez-Ramos, Niño, & Santos, 2013) employed images in which the spores were 

accentuated against the background. This approach demands a substantial level of 

quality in the photographs, in addition the number of used images and the success 

accuracy rate were not mentioned. In (Patricio-Nicolas, Mauro-German, Sergio-Damián, 

Paola-Verónica, & Hector-Luis, 2016), authors relied on a small dataset of microscopic 

images (only 12 images) and extract a few numbers of features to identify and count 

Nosema spores, with this amount it gives the impression that it is only a training process, 

Paola-Verónica, & 

Hector-Luis, 2016 

Prendas-Rojas, 

Figueroa-Mata, 

Ramírez-Montero, 

Calderón-Fallas, 

Ramírez- Bogantes, 

& Travieso-

González, 2018 

           

 

2018 

Nosema detection and 

counting: Binary and 

mathematical 

morphologies 

375 

microscopic 

images 

84.00% 

Proposed Method 

(Dghim, Travieso-

Gonzales, Dutta, & 

Hernández, 2020) 

 

2020 

Nosema recognition: 

Binary and mathematical 

morphologies + ANN 

185 

microscopic 

images 

91.10% 

 

Proposed Method  

 

2021 

Nosema recognition: 

Binary and mathematical 

morphologies + ANN+ 

SVM+ CNN+ 

AlexNet+VGG16+VGG19 

2000 

microscopic 

images 

96.25% 
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if so, a high accuracy is misleading 92%. Compared to our method in (Dghim, Travieso-

González, Dutta, & Hernández, 2020) in which we relied on 85 typical images obtained 

from the microscope, in them it is clearly noticed that there is a lot of noise and 

extracted 9 features that we used later with an ANN classifier to recognize Nosema cells, 

and we obtained a success accuracy of 91.10%. In (Prendas-Rojas, Figueroa-Mata, 

Ramírez-Montero, Calderón-Fallas, Ramírez- Bogantes, & Travieso-González, 2018), 

authors extracted three principals features to characterize Nosema cells and worked on 

375 images to test their method; the accuracy was 84%. When compared to the three 

previous studies, this accuracy appears commendable, particularly considering the 

limited number of utilized microscopic images (more than the three previous works). 

Through this, we conclude that the number of the images in the dataset makes a big 

difference in the success accuracy of the method, as well as the exactitude, the precision 

and the choice of calculated features that describe the Nosema cell surely contribute to 

the amelioration of this accuracy. 

The presented method consists of two main parts. The first part is the study of 

microscopic images and the extraction of the most relevant characteristics that can 

describe a Nosema cell. The second part is the use of different kinds of classification 

systems to recognize the Nosema cells. Some of those classifiers used the extracted 

features to the recognition process like ANN and SVM while the other deep learning and 

transfer learning classifiers used microscopic images of Nosema cells, these classifiers 

are an implemented method CNN, AlexNet, VGG16, and VGG19 pretrained models. In 

contrast to prior literature, our approach demonstrated richness, diversity, and 

distinctiveness across multiple facets: from the computed cell features and employed 

classifiers to the chosen datasets and the attained success accuracy, which surpassed 

the literature's figure (96.25%). Moreover, this reaffirms the efficacy of deep learning 

tools in the recognition of Nosema images, as posited in the Hypothesis within the thesis 

introduction section. 

The next section delves into fine-tuned models to conduct more experiments for 

Nosema recognition. These experiments use a new environment of work with Python 

3.7.9 amd64, and a machine equipped with an i7-9700/8GB, and a GPU processor. 

MATLAB was initially utilized for image processing to highlight its strengths in this 
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sector. As the project continues, Python will be used for machine learning tasks 

because of its large libraries and frameworks that are well-suited for complex 

computational tasks. We will use data augmentation techniques in this phase, and the 

dataset will be increased to contain thousands of photographs. Python's versatility 

and the availability of image augmentation tools make it an excellent choice for this 

stage of the study, allowing us to improve the dataset's resilience and variety for more 

successful machine learning model training. 

The new experiment uses many and various fine-tuning models involving an increasing 

number of epochs to improve the recognition accuracy of Nosema as much as possible. 

In fact, the first part of experiments is done simply by fine tuning the pretrained models 

and the second phase is done by exploiting the efficiency of data augmentation to 

increase the accuracy of recognition. 

3.8  Fine-tuned models without data augmentation 

3.8.1 Methodology 

In the previous sections of this chapter, the models AlexNet, VGG16, and VGG19 were 

employed to initiate transfer learning. This initial endeavor was aimed at assessing the 

efficacy of these models in recognizing disease cells and juxtaposing their performance 

against other machine learning techniques (ANN and SVM) and deep learning 

techniques (CNN). Transfer learning models have shown their high efficiency compared 

to different classifiers and have achieved an accuracy of 96.25% in Nosema cell 

recognition. Despite reaching the highest accuracy reported in the literature, we were 

excited to conduct more experiments using several transfer learning models to get a 

better result. As such, the concept involves manipulating the number of epochs, mainly 

since we previously relied on a limited number of them, that was, at most, 30. 

Additionally, leveraging a GPU processor is crucial to expedite simulation time and 

achieve outstanding image display, responsiveness, and visual smoothness outcomes. 

In this experiment, we fine-tuned around 19 transfer learning models, which are 

EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4, 

EfficientNetB5, EfficientNetB6, EfficientNetB7, and Inception. ResNetV2, InceptionV3, 

MobileNet, MobileNetV2, ResNet50, ResNet50v2, ResNet101, ResNet152V2, VGG16, 
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VGG19, and Xception. Prior to each experiment, a specific training dataset is designated 

for training the model. Additionally, a validation dataset might be employed to ascertain 

the model's aptness and pinpoint optimal classifier hyperparameters. Lastly, a set of 

tests allows us to get an idea of the real performance of the model. In this case, the 

chosen approach ideally involves a ten-cross-validation strategy. Out of these, eight 

folds exist for training and 2 for testing. The models are initialized with pre-trained 

ImageNet weights, and we fine-tuned them with our dataset, DS1, which contained 

2000 images each of Nosema and non-Nosema. All the pre-trained models will be used 

as feature extractors. To fine-tune the pre-trained models, for every one of them, the 

last predicting layer will be placed by our own predicting layer of two classes, Nosema 

and non-Nosema, using a sigmoid activation function. The weights are used as feature 

extractors and are frozen and not updated during the training. The fine-tuned models 

have the same architecture as shown in Figure 3.26. 

 

Figure 3.26 Pipeline of fine-tuned models 

The information Images are standardized to a common size of 200 by 200 pixels and 

include three RGB channels (Red, Green, and Blue). The first nine normalized images 

with labels are shown in Figure 3.27. 
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Figure 3.27 Prepared Input Images for fine-tuned models 

The parameters of each model must then be set, as is customary. Furthermore, the 

number of epochs must be determined. The accepted approach in our setting is as 

follows:  

1-Start training the models with 50 epochs. It should be noted that convergence might 

take up to 50 epochs, depending on the learning rate used. If image augmentation layers 

are not used, validation accuracy may be as low as 60%.  

2-After training, discard the models that reach an accuracy less than 96.25% (the 

maximum accuracy in the prior tests) and keep the others.  

3-Run a second experiment with conserved models for a total of 100 epochs. 

4- Throughout the experiment, certain models were halted before reaching 100 epochs. 

This decision was based on their consistent decline in accuracy over a span of 12 epochs, 

coupled with their failure to surpass the 96.25% benchmark. Continuing their training in 

such cases would have been inefficient and time-consuming. 
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5- Ultimately, only the models with the highest performance across the 100 epochs will 

be used for the following experiment. In fact, it should be mentioned that all models 

begin to decrease before completing the 100 epochs, which is why we did not do 

another experiment with more than 100 epochs. 

3.8.2 Experiment results 

The accuracies are given by a 5-fold cross-validation strategy. This approach involves 

randomly dividing the set of observations into five groups, or folds, of approximately 

equal size. The first fold is treated as a validation set, and the method is fit on the 

remaining 5−1 folds. Every paricular result of a paricular folder was given in the form 

of an accuracy model, a loss model, and a confusion matrix, which show the exact 

precision of the folder. After that, the mean accuracy was calculated to have the final 

precision of the fine-tuned model. 

Like said in the methodology, the 19 models were first trained during 50 epochs. Next, 

the 7 models in Table 3.10 below were eliminated because of their low accuracies or 

because they continued to decrease after 50 epochs. All models approve different 

frozen weights. The best mean accuracy result during 50 epochs of training was 93,88%, 

and it was given by the pretrained model EfficientNetB5. Note that some of them have 

stopped before achieving 50 epochs. Table below can show the results of this 

experiment. 

Table 3-10: Experiment results for fine-tuned models with 50 epochs 

Fine-Tuned Model Epochs Frozen weights Mean accuracy % 

EfficientNetB4 50 17.673.823 93.28 ±1,83 

EfficientNetB5 50 28.513.527 93.88±1.59 

EfficientNetB6 50 40.960.143 93.28±1.74 

InceptionResnetV2 20 54.336.736 60.07±3.58 

InceptionV3 40 21.802.784 73.74±1.77 

Xception 30 20.861.480 81.91±6.39 

ResNet152V2 20 58.331.648 60.82±2.76 
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In the next of this subsection the results of fine-tuned models on 100 epochs will be 

shown. Note that some of them have stopped before achieving 100 epochs. 

Table 3-11: Experiment results of fine-tuned models with 100 epochs 

Fine-tined 

Model 

Epochs Frozen Weights Mean Accuracy 

% 

EfficientNetB0 100 4.049.571 95.84±0.87 

EfficientNetB1 90 6.575.239 96.29±0.86 

EfficientNetB2 100 7.768.569 95.59±1.19 

EfficientNetB3 80 42.658.176 94.89±0.66 

EfficientNetB7 60 64.097.687 93.63±0.65 

ResNet50 70 23.587.712 95.84±1.32 

ResNet50V2 60 58.370.944 96.59±1.06 

ResNet101 70 42.658.176 95.94±0.51 

MobileNet 90 3.228.864 95.04±0.66 

MobileNetV2 90 2.257.984 96.34±0.64 

VGG16 100 14.714.688 97.64±0.75 

VGG19 100 20.024.384 96.79±0.58 

 

Table 3-11 shows that the VGG16 fine-tuned model has the highest precise accuracy of 

Nosema identification at 97.64%. It must be stated that we have increased the 

accuracy of recognizing Nosema cells by 1.39% (previously 96.25%). 

The third step of this experiment involves applying augmentation data to the model that 

provides the greatest recognition accuracy (VGG16) in order to measure the skills of the 

latter in the improvement of the prediction of the fine-tuned model. 

3.9 Fine-tuning VGG16 with Data augmentation 

Deep neural networks' robustness is highly related to the image number computed in 

the datasets. This is due to the fact that the training process involves dealing with 

millions of parameters. This way during the training, it becomes imperative to acquaint 

the system with an exponential number of parameters, which must be matched by a 
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proportional number of examples, if it is not the case, the network will learn more than 

what is supposed and generate the over-fitting problem. In the case of very deep 

architectures like VGGNet and GoogLeNet, the problem is more complicated, and the 

number of parameters is very large. On the other hand, many applications need very 

deep architectures to increase the number of extracted features and cross the deepest 

component or propriety describing this pattern. In this study, the efficiency of data 

augmentation is utilized to address this challenge, a strategy that is commonly employed 

in the existing literature, as seen in (Pezoulas, Grigoriadis, Gkois, Tachos, Smole, Bosnić, 

…Fotiadis, 2021), (Lee, Lee, Hong, Bae, Lim, & Kim 2021), and (Zhang, Bao, Sun, Li, Li, 

Qian, & Zhou, 2022) many architectures used this metric and approved their efficiency 

to overcome the over-fitting problem. This technique consists of the transformation of 

the training set (varied size, angles, contrast...etc.) with the purpose to increase the 

generalization and improve the ability of the model to recognize different versions of 

the same image. In this work, the data augmentation technique was utilized as a crucial 

approach to enhance the training dataset's size and enhance the efficiency of the 

proposed method.  The objective is to assess the impact of data augmentation on the 

development of AI (artificial intelligence) models by improving the performance of 

transfer learning models in disease recognition (Chaitanya, Karani, Baumgartner, Erdil, 

Becker, Donati, & Konukoglu, 2021). 

The Nosema images underwent various degrees of rotation using a specific Python code. 

The images were randomly rotated at angles of 20, 30, 60, and 180 degrees, utilizing the 

rotation range parameter. Subsequently, the augmented dataset of images was used for 

training purposes. A 5-fold cross-validation methodology was applied, and the training 

was done during 100 epochs. VGG16 is fine-tuned as previously. 

As a result, the proposed method achieved a mean accuracy of 99.35% showing an 

improvement of 1.71% compared to the fine-tuned VGG16 without augmentation data. 

Moreover, the highest precision given by the VGG16 fine-tuned model was 99,70% with 

the particular 2-fold using a +30 º rotation of the images showing an improvement of 

3.45% compared to the first experiment did previously. The next tables and figures show 

the detailed result. 
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Figure 3.28 9 first augmented images with 30-degree rotation 

 

 

Figure 3.29 Experiment setting for VGG16 
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Table 3-12: Experiment results for fine-tuned VGG16 model with Augmentation Data 

 

 

 

 

Figure 3.30 Accuracy and loss models for best precision given with 2-fold cross 

validation strategy. 

 

VGG16 fine-tuned 

model using 

Augmentation 

Data 

Rotation  Mean Accuracy during 100 epochs 

% 

+20 98.57±0.27 

+30 99.35±0.14 

+60 99.25±0.12 

+180 97.89±0.09 
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Figure 3.31 Confusion matrix for best accuracy (99.70%) given by VGG16 with 

Augmentation Data. 

The experiments demonstrate that data augmentation method improves the 

classification performance. As a result, the proposed method enabled VGG16 to achieve 

99.70% accuracy, showing an increase in recognition performance improvement by 

3.45% compared to its first experiment (see table 3.4) like shown in table and figure 

below. This leads us to conclude that several factors can affect the work of a transfer 

learning model, and this thesis presents many factors such as the number of images in 

the dataset, the choice of parameters setting of the model, the choice of epochs number 

during the training, and especially the use of the data augmentation method. Moreover, 

the most important of all is to solve a recognition or identification problem and 

achieving the optimal outcome needs exploring different architectures and conducting 

numerous experiments on the dataset. 
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Table 3-13: Comparison between proposed methods 

 

  

 

 

 

 

 

 

 

Figure 3.32 The increment of VGG16 precision accuracy from the first to the last 

experiment 

From 20,000 images, there are only 7 Nosema images and 14 non-Nosema images that 

have been misclassified as shown in the confusion matrix above (Figure 3.31), and this 

essentially related to the quality of the used images in this doctoral thesis. This problem 

was mentioned and studied in chapter 2. Let’s see an example of a Nosema image which 

has been classified as non-Nosema image in Figure 3.33. 

  

VGG16 Proposed method 2021 Proposed method 2022 

Performance without 

Augmentation Data 

20 epochs 100 epochs 

96.25% (particular file 

accuracy) 

97.64% (mean accuracy) 

Performance with 

Augmentation Data 

 

- 

99.35% (mean accuracy) 

99.70% (particular file accuracy) 
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Figure 3.33 An example of a misclassified Nosema image 

The image is a Nosema cell superimposed on the counting grid. Its location gives it a very 

different shape from a normal cell because of the color of the grid, despite this, the 

identification result is close to 100%. Our challenge was identification of Nosema cells 

despite the defective and noisy quality of the used images. 

3.10 Conclusion 

The application of AI in the real world makes systems easier and smarter. For instance, 

it enhances the comprehension of disease systems, enhances the reproducibility of 

diagnoses, and can even substitute experts in certain repetitive tasks, thus undeniably 

benefiting various domains. In this area, disease analysis becomes a very interesting 

research domain in AI, looking for understanding the symptoms, doing the diagnosis 

automatically and rapidly take a decision. In these axes, we presented our contribution 

by trying to answer the questions related to the recognition of Nosema in the 

microscopic images.  

In this chapter, the recognition method is presented. The contribution in this domain is 

delineated through three algorithms. The initial algorithm entails the extraction of 

features from the Nosema cell, which are subsequently fed into ANN and SVM classifiers 

to facilitate cell recognition based on the extracted features. In the second one, the 

images of Nosema cells and other objects in the digital images are used in deep learning 

and transfer learning models to recognize the disease. Lastly, in the third one a data 

augmentation method was implemented to enhance the functionality of the model. 
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In this work, the process of calculating Nosema features and their application in 

supervised recognition has been outlined. Additionally, various classifier models have 

been discussed to showcase the effectiveness of the approach and the noteworthy 

outcomes achieved. Especially for the use of transfer learning with augmentation data 

to do the recognition task. 
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4 Chapter IV: Automatic 
Algorithm for Nosema 
Identification & Counting 

4.1 Introduction  

Nasema was recognized in earlier chapters by analyzing individual cell images, collecting 

the cell's properties, and using them in the classification procedure. Individual cell 

photos were also used to retrain several Nosema detection methods. The previous two 

approaches identified sick cells from other things by using their individual cropped sub-

pictures, which were cropped from the original microscopic images (Nosema and non-

Nosema items). Based on the information put within the VGG16 model in the previous 

chapter, this chapter tries a fresh approach. Indeed, the work in this chapter is entirely 

automated; the methods for automatic recognition and counting of cells inside 

microscopic pictures based on VGG16-constructed information will be shown and 

detailed in this chapter. To be more exact, the cells will be detected and gathered within 

the main microscopic image to establish the disease stage. A computerized program will 

count the infected cells in the microscopic picture and classify them as very mild, mild, 

moderate, semi-strong, or strong. This established strategy, along with the accurate 

diagnostic, assists in streamlining the infection level. 

The experiments in this chapter make use of a Python 3.7.9 amd64 environment and a 

system outfitted with an i7-9700/8GB and a GPU processor. 

4.2 The automatic algorithm 

One of the main problems that can appear when developing a computer vision system 

is being able to choose the appropriate processing techniques to extract the necessary 

information (Gonzalez & Woods, 2008) and achieve the stated objective. As a result, 

various techniques built upon distinct automated systems developed within the same 

domain were evaluated (Alvarez-Ramos, Nino, & Santos, 2013). 

Chapter 3 described the usage of numerous classifier models to demonstrate the 

efficacy of this work´s proposed technique and its highly interesting findings particularly 
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regarding the use of transfer learning with augmentation data to perform the cells 

recognition task. As shown previously, the trials undertaken allowed the fine-tuned 

VGG16 model to achieve 99.70% identification accuracy of Nosema cells.  

In this chapter, the automatic algorithm makes use of the VGG16's expertise and results 

to identify the needed items in microscopic images. In other words, the main role of this 

algorithm is to perform object detection on an input image using a sliding window 

approach and a pre-trained model (VGG16). This section of the work is implemented 

with Python. Python was chosen because of its library richness, allowing to push the 

language's limits and undertake ambitious and hard projects in various application 

fields. In a scientific study, for example, the biopython library makes it easier to process 

and interpret biological data. The pyGame library is utilized in the area of video games 

to construct 2D or 3D video games. Python modules, therefore, contribute to the 

language's two key strengths: simplicity of use and diversity. In figure 4.1 there's an 

overview of the implemented methodology followed. The steps of this method will be 

detailed in this chapter. 

 

Figure 4.1 Pipeline of the proposed algorithm for the automatic detection. 

In the subsections below there's a step-by-step explanation of the automatic algorithm 

implementation and functionalities.  
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4.2.1 Used libraries 

The algorithm accepts an RGB microscopic image as input and produces an output a file 

containing images of the identified cells. Additionally, a text file is generated, providing 

the count of cells identified in each sliding window. The algorithm starts by calling the 

necessary libraries and the required packages.  

 

Figure 4.2 Used libraries 

 A brief description of the used libraries and their functions are detailed below: 

 TensorFlow: is a deep learning package that was created by the Google Brain 

team (Mattman, 2021). It offers a versatile and effective framework for 

developing various machine learning models, particularly neural networks. 

TensorFlow provides automated differentiation, GPU support for rapid 

computing, distributed training, and platform-independent deployment. 

 Keras (tf.keras): is a popular deep learning library option because it is tightly 

linked with TensorFlow (Géron, 2022), which is well-known for its dependability 

in production deployments. TensorFlow also includes tools for production 

deployment and management, debugging and visualization, and running models 

on embedded devices and browsers. Keras is utilized by Google, Netflix, Uber, 

and NVIDIA in the technology business. We picked tf.keras as our primary tool 

for this project since it is a library focused to expediting the building of deep 

learning models, and also it is used to upload our model VGG16. 

 Cv2: is a Computer Vision Library, often known as OpenCV, that will be used to 

execute image processing tasks. 

 Numpy: is a package that allows to work with multidimensional arrays and 

matrices. 
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 Datetime: is a built-in Python module that contains classes for manipulating 

dates and timings. It enables to work with dates, times, and time intervals, 

making it easy to execute time and date calculations. 

 Imutils: is a set of functions that make it easier to interact with OpenCV, a 

famous computer vision library. It offers a set of simple and straightforward tools 

for performing typical image processing tasks and operations. Imutils' primary 

functions include the ability to resize pictures, rotate images, translate images, 

conduct color conversions, and operate with contours and bounding boxes. 

 OS: is a Python built-in module that allows to interface with the operating system 

and execute actions on directories, files, and system data. Some of the most 

important functions of Os include the ability to create, delete, and navigate 

directories, operate with files (reading, writing, and deleting), and access 

environment variables. 

Both imutils and OS are strong packages that complement other libraries such as 

OpenCV and TensorFlow, making it easier to work with pictures and handle files and 

directories in Python applications. 

4.2.2 Variables configuration  

The next step involves configuring the required parameters for object detection 

method: 

Windows= [(30,30), (30,30)]: represents the size of a window for object detection. The 

windows are 30x30 pixels in size. Additionally, there are two window sizes available. A 

series of trials tested the available window sizes to determine the dimension and see 

which size yielded the best Nosema number.  

Overlap percentages = [0, 0]: creates a two-valued list named overlap percentages. 

During the object detection procedure, each number reflects the proportion of overlap 

between adjacent sliding panes. Both values are set to zero in this case, indicating that 

there is no overlap between windows. Based on a specified window size and an overlap 

percentage, the step size for sliding windows is calculated.  The function is as follows: 

Overlap = (window size * overlap percentage) / 100: This calculates the amount of 

overlap based on the specified percentage of overlap and the width of the window. The 

overlap is calculated as a fraction of the window width, so it's divided by 100. 
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Step = window size - overlap: This computes the step size by subtracting the overlap 

from the window´s width. Step size is an integer value. The step determines how much 

the sliding window will move horizontally and vertically between consecutive positions 

during object detection or feature extraction processes. 

The filename template of the input image used for object recognition is 'Image.JPG'. The 

last variable is name-trained-model = 'modelo1 rep 0':   represents the filename or 

identifier of the pre-trained model that will be used for object detection. 

In summary, this code snippet initializes various parameters for object detection. It sets 

up the window sizes, overlap percentages, the filename of the image template, and the 

identifier of the pre-trained model to be used in the subsequent parts of the algorithm. 

4.2.3 Load the pretrained model: VGG16 

A function was implemented to load the pre-trained VGG16 model: using a tf.keras 

command called tf.keras.models.load_model(), this function takes one parameter 

file_name, which represents the file name of the pre-trained model to be loaded. The 

function uses a default value of 'modelo1 rep 0.h5' if no filename is provided when the 

function is called. Inside the function, a new variable name is created by concatenating 

the value of file_name with the file extension '.h5'. The '.h5' extension is typically used 

for saving Keras models in HDF5 format. The described function loads the model 

architecture, model weights, and optimizer state from the specified file. The loaded 

model is assigned to a new variable called new_model. The function then calls 

new_model.summary(), which prints a summary of the model architecture to the 

console. The summary includes information about the layers in the model, the number 

of parameters, and the output shape of each layer. Finally, the function returns the 

new_model, which is the pre-trained model loaded from the specified filename. 

To summarize, this function is a useful tool that loads a pre-trained Keras/TensorFlow 

model from a file and returns the loaded model object. Moreover, this tool allows one 

to reuse and train the pre-trained model again, or to utilize it for inference on new data. 

In this method, transfer learning is conducted. Transfer learning means that the VGG16 

pre-trained model is loaded using tensorflow/keras and a final layer is added that 

performs classification to this model. If the classification is accurate, a new training of 
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the model is performed, but just on the last layer created (to fit the images); during this 

training, all elements of the pre-trained model are not trained anymore; they are in 

feature extraction mode. 

4.2.4 Pyramid Function 

The function pyramid involves three parameters: image, which is the input image, scale, 

which is the scaling factor for resizing the image, and minSize, which is the minimum 

size threshold for stopping the pyramid generation. Below there are the steps followed 

to create a pyramid image: 

1-The function starts by yielding the original image as the first element in the pyramid. 

This is done to include the original image scale in the pyramid. 

2-The function enters an infinite loop while remaining True. 

3-Inside the loop, the width w of the image is calculated by dividing the original width 

(image.shape[1]) by the scale parameter. This resizes the image to a smaller size at each 

iteration of the loop. 

4-The imutils.resize function is called to resize the image to the calculated width w.  

5-The imutils.resize function is a convenient method from the imutils library that resizes 

the image while maintaining its aspect ratio. 

6-The function checks if the resized image's height (image.shape[0]) is less than the 

minSize[1] or if its width (image.shape[1]) is less than the minSize[0]. If either condition 

is true, it means the image has become too small to continue generating the pyramid, 

and the loop is broken. 

7-If the conditions in step 5 are not met, the current resized image is yielded as the next 

element in the pyramid. 

8-The loop continues, and the process of resizing and yielding the image is repeated until 

the conditions in step 6 are met, and the loop is exited. 

In summary, the pyramid function generates an image pyramid from the input image. It 

starts with the original image and then iteratively resizes the image at different scales 

by the specified scale factor. The process continues until the image becomes smaller 

than the specified minSize, and the pyramid generation stops. The resulting pyramid 

contains multiple scales of the input image, which is useful for applying multi-scale 

object detection or processing tasks. 
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4.2.5 Sliding window function 

The Python method sliding window creates sliding windows over an input image that 

have a certain size. Sliding windows travel sequentially over the picture, collecting 

various sections of interest, and are used for localized processing, such as object 

detection or feature extraction. 

1-The function sliding_window requires three inputs: image, the input picture, stepSize, 

the step size or stride of the sliding window, and windowSize, a tuple indicating the 

sliding window's size (height, width). 

2-Two nested loops are used at the function's beginning. The inner loop iterates over 

the image's horizontal coordinates (x), while the outer loop iterates over the image's 

vertical places (y). 

3-The values for y and x are generated using the range function. The range for y has a 

step size of stepSize and extends from 0 to the image's height (image.shape[0]). Similar 

to y, the range for x has a step size of stepSize and ranges from 0 to the image's width 

(image.shape[1]). 

4-A sliding window generator is made using the yield statement inside the stacked loops. 

For each point (x, y) in the picture, the generator produces a tuple (x, y, window) after 

iterating over it. 

5-The window is extracted from the image using slicing. The slicing notation image[y:y 

+ windowSize[1], x:x + windowSize[0]] extracts a subregion from the image starting at 

position (y, x) and with the size specified by windowSize. 

6-As long as there are valid positions in the image, the generator keeps producing sliding 

windows for those points. 

Figure 4.3 shows the movement of the sliding window in the same microscopic image, 

and Figure 4.4 shows some details. 
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Figure 4.3 Sliding window in green color moving through the microscopic image 

 

 

Figure 4.4 Sliding window Details 

In summary, the sliding_window function constructs a series of sliding windows that 

travel over the input picture at a predetermined step size. The function iterates over all 

potential places for the sliding windows using nested loops, returning a set of integers 

comprising the position (x, y) and the matching window data taken from the image at 

each point. This generator may be used to perform localized operations on distinct parts 

of a picture, such as object recognition, feature extraction, or other activities that 

involve inspecting numerous sections of the input image. 
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4.2.6 Record Results 

The code initiates by opening a file in append mode to record the output of the image 

processing and object detection activities. It then reads an image from a file and loads a 

pre-trained model. Following this, a directory is created with a timestamped name to 

store the results, and another file is opened in append mode to record the output of the 

image processing and object detection processes (see Figure 4.5). 

 

Figure 4.5 Record results description 

 

4.3 Results and discussion 

4.3.1 Experimental results 

As stated in the introduction to the thesis paper, the used dataset is initially divided into 

5 files initially labeled by the experts based on the degree of infection. A clean 

microscopic picture is required for the ``very mild´´ infection category. The mild level 

contains [5-30[ spores, moderate has [30-80[, semi-strong has [80-120[, and strong has 

more than 120 spores in a single microscopic image.  

Several algorithm tests were performed on many microscopic pictures of various 

infection levels. Consequently, we assessed the algorithm based on the number of 

spores or cells present in each microscopic picture. As an example, the outcomes of 

small images from each level are presented Below. 
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Figure 4.6 Detection and counting results on an input image of mild level 

 

 

Figure 4.7 Detection and result on an input image of moderate level 

 

Figure 4.8 Detection and counting result on an input image of semi-strong level 
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Figure 4.9 Detection and counting result on an input image of strong level 

Table 4.1 shows the results of the automated counting algorithm on around twenty 

randomly chosen images for the experiment. 

Table 4-1: Experiment results for the Automatic Algorithm 

Image label/ infection 
level 

Manuel 
Counting 

Automatic 
Counting 

Level 
confirmation 

%Absolut 
error 

%Success 

Centr194.JPG/Strong 143 143 confirmed 0 100 

centr178.JPG/Moderate 38 38 confirmed 0 100 

Inf der201.JPG/Semi-
strong 

87 87 confirmed 0 100 

Sup der185.JPG/Semi-
strong 

94 94 confirmed 0 100 

1- Sup Iz231.JPG/Strong 161 160 confirmed 0.62 99.38 

Centr240.JPG/Moderate 50 50 confirmed 0 100 

4-Inf izq292.JPG/Mild 22 22 confirmed 0 100 

4-Inf 
izq243.JPG/Moderate 

51 51 confirmed 0 100 

Centro254.JPG/Semi-
strong 

92 92 confirmed 0 100 

Inf izq278.JPG/Strong 164 165 confirmed 0.60 99.40 

Sup der213.JPG/Moderate 73 73 confirmed 0 100 

2- Inf izq184.JPG/Semi-
strong 

107 107 confirmed 0 100 

Centro213.JPG/Semi-
strong 

91 91 confirmed 0 100 

Sup der201.JPG/Semi-
Strong 

95 95 confirmed 0 100 

4- Supder255.JPG/Semi-
strong 

85 85 confirmed 0 100 
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5- Centr184.JPG/Semi-
strong 

118 118 confirmed 0 100 

5- Centro292.JPG/Mild 19 19 confirmed 0 100 

2-Sup der292.JPG/Mild 31 31 confirmed 0 100 

1-Sup izq290.JPG/Semi-
strong 

93 93 confirmed 0 100 

Centro277.JPG/Strong 221 222 confirmed 0.45 99.55 

Total%   100% 0.01 99.99 

 

To calculate the percentage of absolute error (%AE) between the manual counting (MC) 

and the automatic counting (AC), we used the following formula: 

 

%AE= 1AE/MC2 × 100  (4.1) 

 

Where AE determinate the absolute difference between (AC) and (MC), AE=|AC-MC|. 

The success accuracy (%S) was calculated using a simple substruction function: 

 

 

Table 4-2: Performance of the automatic algorithm in predicting infection level 

level Algorithm 
Precision 

Level 
validation 

Mild 100% true 

Moderate 100% true 

Semi-strong 100% true 

Strong 99.05% true 

Table 4-2 provides information about the performance of the automatic algorithm in 

predicting the different infection levels of Nosema using precision metrics. The accuracy 

of positive predictions is assumed, it is calculated as the ratio of true positives to the 

sum of true positives and false positives. In this table, the values under the "Algorithm 

Precision" column indicate the precision of the algorithm for each level. The algorithm 

achieved 100% precision for predicting "Mild," "Moderate," and "Semi-strong," and 

99.05% precision for predicting "Strong". The value "true" suggests that the predictions 

%S= 100% − %AE          (4.2)  
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for each level were validated or confirmed, meaning that the algorithm's predictions 

matched the actual and real observations.  

The algorithm's precision is very high for all levels, ranging from 99.05% to 100%. This 

indicates that when the algorithm predicts a certain level, it tends to be correct with a 

high degree of accuracy. 

4.3.2 Discussion 

The findings of the automated Nosema algorithm match the actual number of cells in 

the microscopic pictures studied. Manual cell counting in microscopic images may differ 

somewhat between persons, with variances often not surpassing 1 or 2 cells (due to 

poor image quality). For example, one individual can count 42 cells in the same picture 

whereas another can count 43 cells. This minor difference has no effect on the overall 

analysis of the picture. In the experiment, a code was run on a set of randomly chosen 

microscopic images. None of the images analyzed were improperly categorized by the 

algorithm; the system still detects a number of cells within the required range of the 

input image type, and the number given is nearly equal to the number counted 

manually. Although the chance of categorization mistakes persists, it can be confidently 

said that the error rate is extremely low at 0.01%. With this assumption, we can state 

that the accuracy of this automated algorithm's Nosema identification is expected to be 

99.99%. We attempted to be truthful, and the success now has the highest accuracy in 

comparison to all previous works. Furthermore, the algorithm works effectively across 

levels, with great precision, and its predictions have been confirmed for all of the stated 

levels. The observed accuracy for the 'Strong' level is not 100%, and this can be 

attributed to challenges associated with the quality of microscopic images. The presence 

of a significant number of objects in the images, possibly affecting clarity or introducing 

noise, poses a difficulty for the algorithm in accurately giving the true number of Nosema 

cells in the image. Despite this challenge, the algorithm still demonstrates notable 

precision, indicating its effectiveness in the presence of such complexities. Ongoing 

efforts to address image quality concerns may further enhance the algorithm's 

performance for this particular level. 
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Table 4-3 below details a comparison between our approaches and the automatic 

algorithm and other existing methods in the literature. 

Table 4-3: Comparison of the automatic Algorithm with previous works in the literature 

(%) 

 

Authors Year Methods Dataset Accuracy 

Alvarez-Ramos, Niño, & 

Santos, 2013 

  

2013 

Nosema classification : 

SIFT+SVM 

- - 

Patricio-Nicolas, Mauro-

German, Sergio-Damián, 

Paola-Verónica, & 

Hector-Luis, 2016 

           

2016 

Nosema counting 

predefined functions in the 

OpenCV Library 

12 

microscopic 

images 

92.00% 

Prendas-Rojas, Figueroa-

Mata, Ramírez-Montero, 

Calderón-Fallas, 

Ramírez- Bogantes, & 

Travieso-González, 2018 

           

 

2018 

Nosema detection and 

counting: Binary and 

mathematical morphologies 

375 

microscopic 

images 

84.00% 

Proposed Method 

(Dghim, Travieso-

Gonzales, Dutta, & 

Hernández, 2020) 

 

2020 

Nosema recognition: Binary 

and mathematical 

morphologies + ANN 

185 

microscopic 

images 

91.10% 

 

Proposed Method 

(Dghim, Travieso-

Gonzales, Burguet, 2021) 

 

 

2021 

Nosema recognition: Binary 

and mathematical 

morphologies + ANN+ 

SVM+ CNN+ 

AlexNet+VGG16+VGG19 

2000 

microscopic 

images 

96.25% 

Proposed Method 2022 Nosema recognition: 

VGG16+ Data 

Augmentation 

10000 

Microscopic 

images 

99.70% 

Automatic counting 

Algorithm 

2023 Nosema detection and 

counting: 

Imageprocessing+VGG16 

… 99.99% 
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4.4 Conclusion 

Nosema cells are recognized in their major pictures in this chapter. The approach 

developed is entirely automated, relying on the essential information extracted by the 

transfer learning model VGG16, which was employed for detecting Nosema cells in the 

preceding chapter. This program tries to search for regions of interest using image 

processing techniques and then calls the retrained model to determine whether the 

region is Nosema. The results are flawless, and the program achieves the maximum 

identification accuracy 99.99%. 

The automatic algorithm demonstrates excellent performance and effectiveness in the 

diagnosis task, as indicated by its precision metrics. With precision rates ranging from 

99.05% to 100% across different severity levels, the algorithm consistently provides 

accurate and reliable predictions. These results affirm the algorithm's capability to 

reliably diagnose and classify different levels, making it a robust tool for the diagnosis 

task. 
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5 Chapter V: Conclusions 
5.1 Synthesis 

As the main conclusion of this Doctoral Thesis, the objectives initially marked have been 

achieved and a Nosema recognition automatic algorithm has been made. The 

hypothesis initially set in this thesis was confirmed, and an automatic algorithm was 

implemented, and it is effective in achieving its intended purpose, which is the diagnosis 

of Nosema disease. The implemented algorithm in this thesis differs from those found 

in the literature because it relies on a variety of image processing and deep learning 

tools.  

The work presented in this thesis is marked by a cohesive and progressive flow, 

seamlessly connecting from Chapter 2 to Chapter 4, ensuring a logical and integrated 

development of ideas and methodologies: 

-This thesis has proposed a segmentation approach for microscopic images of Nosema 

disease. This segmentation method provides a set of operational tools that makes it 

possible to extract in an automatic and robust way the most useful features of Nosema 

cell. 

-For the calculation of features, mathematical and binary morphologies have been 

adapted, so this method groups several types of parameters that can characterize an 

object in a microscopic image; these parameters concern its shape, color and texture 

how chapter 2 showed. 

-For the recognition of Nosema cells from the other objects in the microscopic image, 

two ways were approved. The first method is to identify them using their calculated 

features relied on ANN and SVM classification systems. The second way is to classify the 

images between Nosema and non-Nosema, relying on deep learning tools (an 

implemented CNN). In Chapter 3, there are various transfer learning models and 

augmentation data that suggest that transfer learning is more successful in recognition 

and identification tasks. The combination of the VGG16 transfer learning model and 

Data augmentation improves disease cell detection accuracy to 99.70%. 

-Finally, in chapter 4, the fully automatic algorithm was implemented for Nosema 

detection and counting from the background of the image achieving an accuracy of 
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99.99% in Nosema counting and diagnosis. The automatic algorithm exhibits 

commendable performance in the diagnosis task, demonstrating high precision across 

various severity levels: Mild, Moderate, Semi-strong, and Strong. The algorithm 

consistently achieves precision rates of 100% for 'Mild,' 'Moderate,' and 'Semi-strong' 

levels, showcasing its robustness in accurately classifying instances within these 

categories. Although the accuracy for the 'Strong' level is slightly below 100%, attributed 

to challenges related to the quality of microscopic images and the abundance of objects, 

the algorithm's precision remains noteworthy. These findings suggest that the 

automatic algorithm is a valuable tool for the diagnosis task, with potential applications 

in the accurate classification of different severity levels. 

5.2 Future works 

Exploring alternative methods for detection and identification of disease cells. One 

potential approach could involve removing the counting grid from the microscopic 

images. This adjustment might lead to a more accurate determination of the detected 

cell count. The characterization of the counting grid in the images will be carried out by 

relying on its frequency nature and using filtering in the FFT (Fast Fourier Transfer) 

(Cooley & Tukey, 1965). The preparation of the image for cell counting (preprocessing), 

it is obtained by erasing the grid while keeping intact the cells in the image. This method 

is based on the substitution of the grid signature in the FFT. The objectives to achieve 

future works will be the following:  

- The absence of human intervention for the processing of images. The proposed 

method for the characterization and erasure of the grid has the advantage of not 

requiring any manual adjustment. This advantage is obtained by searching for the 

signature of the grid in Fourier space: in this space, this signature has a constant width 

of one pixel regardless of the image. 
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7  Resumen en Español 
 

Identificación de células de Nosema usando imágenes 

microscópicas 

Capítulo I- Introducción 

I.1 Motivación 

En los estudios microbiológicos centrados en las enfermedades, los investigadores 

emplean frecuentemente métodos de observación directa para obtener una 

comprensión más profunda de los comportamientos expuestos por los microorganismos 

o células enfermas dentro de condiciones específicas. Esta observación puede llevarse a 

cabo a diferentes escalas, ofreciendo información sobre las características y dinámicas 

de las entidades microbianas investigadas. A nivel de una colonia, los investigadores a 

menudo se dedican a los procedimientos de conteo. Esto implica cuantificar el número 

de microorganismos presentes dentro de un grupo colectivo, proporcionando una visión 

macroscópica de su población y distribución. La observación a nivel de colonia es 

especialmente útil para evaluar la salud general, los patrones de crecimiento y las 

interacciones entre los microorganismos. 

Por el contrario, la observación a nivel celular implica el examen de microorganismos o 

células individuales. Este enfoque a escala más fina tiene como objetivo desentrañar 

detalles intrincados sobre la morfología y la estructura de las entidades individuales. Los 

investigadores se centran en parámetros como la forma, el tamaño y la textura de las 

células, tratando de discernir patrones o irregularidades que podrían indicar 

características o comportamientos específicos. 

En el caso de Nosema, se sabe que es una enfermedad que causa la degeneración del 

tejido digestivo en las abejas, lo que conduce al hambre agudo y, por consiguiente, a la 

mortalidad precoz. Esta degeneración también puede afectar el comportamiento 

volador de las abejas, lo que resulta en una reducción de la población de las (Eiri, 

Suwannapong, Endler, & Neih, 2015). El impacto de Nosema va más allá de las propias 

abejas; tiene efectos adversos sobre la diversidad de las especies vegetales y la 
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productividad de los cultivos. Esto, a su vez, conduce a escasez de polinización y pérdidas 

económicas sustanciales en la producción de miel (Gisder, Schuler, Horchler, Groth, & 

Genersch, 2017), lo que afecta tanto a la producción como a la eficiencia de la 

polinicación. 

La motivación detrás de la realización de esta tesis radica en el reconocimiento de las 

importantes deficiencias y pérdidas derivadas del impacto de las enfermedades 

infecciosas en los animales productores de alimentos, en particular las abejas. Las 

deficiencias y pérdidas identificadas sirven de fuerza motriz para la investigación llevada 

a cabo en el presente documento. La polinización es un proceso ecológico fundamental 

que facilita la reproducción de las plantas florecientes, contribuyendo a la biodiversidad 

y a la salud general de los ecosistemas. Las posibles consecuencias de una ruptura en el 

proceso de polinización se extienden más allá del impacto inmediato en las abejas. Si no 

se dispone de medidas de diagnóstico eficaces para identificar y combatir las 

enfermedades infecciosas en las abejas, es posible que no se apliquen medidas cruciales 

para tratar a las abejas afectadas. Este fracaso en el diagnóstico y el tratamiento 

posterior tiene el potencial de agravar la propagación de enfermedades letales entre las 

poblaciones de abejas. Las repercusiones de este escenario podrían ser graves, no sólo 

para las abejas, sino también para el ecosistema más amplio, la agricultura y los sistemas 

de producción de alimentos que dependen de los servicios de polinización 

proporcionados por estos polinizadores vitales. 

En resumen, el estudio de Nosema es crucial no sólo para entender la salud de las 

colonias de abejas, sino también para evaluar sus ramificaciones ecológicas y 

económicas más amplias, incluyendo efectos en las especies vegetales, la productividad 

de las cosechas y el ecosistema de polinización. 

En esencia, esta tesis busca abordar estas cuestiones críticas contribuyendo al desarrollo 

de herramientas y estrategias de diagnóstico eficaces para combatir las enfermedades 

infecciosas en las abejas. Al hacerlo, pretende mitigar las posibles pérdidas y deficiencias 

en los procesos de polinización, salvaguardando la salud de los ecosistemas y el papel 

esencial que desempeñan los polinizadores en el mantenimiento de la biodiversidad y 

la producción de alimentos. Además, en los esfuerzos de investigación anteriores, ha 

habido una notable brecha en la lucha eficaz contra esta enfermedad desde una 
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perspectiva tecnológica. Para hacer frente a esta deficiencia, la presente tesis pretende 

aprovechar un conjunto amplio de herramientas en el procesamiento de imágenes 

microscópicas junto con métodos avanzados de aprendizaje automático. La intención es 

mejorar la identificación de esta enfermedad mediante la aplicación de enfoques 

tecnológicos robustos e innovadores. 

Esta tesis presenta un nuevo algoritmo automático diseñado para detectar y contar 

células Nosema dentro de imágenes microscópicas. El objetivo primordial es identificar 

y cuantificar estas células para evaluar el nivel de infección, proporcionando así un 

valioso apoyo para diagnosticar la enfermedad asociada. 

I.2 Hypotésis 

Mediante la utilización de herramientas avanzadas en el procesamiento de imágenes 

microscópicas, metodologías de aprendizaje automático, incluido el aprendizaje de 

transferencia y aprendizaje profundo, esta tesis tiene como objetivo desarrollar un 

algoritmo automático para la detección y conteo de células de Nosema. Se hipoteca que 

el algoritmo propuesto no sólo superará los métodos tradicionales en precisión y 

eficiencia, sino que también contribuirá significativamente al diagnóstico de la 

enfermedad de Nosema. Se espera que la aplicación exitosa de este algoritmo mejore 

la comprensión de la enfermedad, proporcione un valioso apoyo a los biólogos y 

contribuya a la conservación de las poblaciones de abejas y la salud general del 

ecosistema. Además, se prevé que el algoritmo automático simplifique el proceso de 

detección y diagnóstico, ahorrando tiempo y esfuerzo a los biólogos implicados en el 

reconocimiento de la enfermedad de Nosema y contribuyendo a intervenciones más 

eficientes y oportunas. 

I.3 Objetivo 

Debido a los altos costos y la complejidad de los sistemas manuales y comerciales de 

detección de enfermedades, esta investigación se aleja de sistemas tradicionales y 

adopta un enfoque más nuevo. Más allá de las muchas ventajas del análisis de imágenes, 

estos nuevos métodos automatizan el complejo proceso de detectar y distinguir las 

células enfermas de otros tipos de células presentes dentro de la misma imagen 

microscópica. 
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El objetivo fundamental de esta investigación es desarrollar un algoritmo capaz de la 

identificación automática y el conteo de células, que permitirá a los biólogos medir los 

niveles de infección y proporcionar diagnósticos precisos. Para alcanzar este objetivo 

general hay que cumplir una serie de tareas o objetivos consecutivos: 

1. Creación de conjuntos de datos de imagen: Generar un conjunto de datos completo 

de imágenes mediante el recorte de fotografías individuales de células Nosema y otros 

objetos coexistentes de las imágenes microscópicas primarias. 

2. Investigación de las Células de Nosema: Investigar cuidadosamente las características 

distintivas de las células de nosema y calcularlas. Esta investigación implica evaluar 

meticulosamente diversas herramientas en el procesamiento de imágenes y el 

reconocimiento de patrones dentro de la visión por computadora. El objetivo es 

seleccionar una metodología existente o formular una nueva y compilar un conjunto de 

datos de características. 

3. Prueba con diversas técnicas de aprendizaje automático: Utilice los dos conjuntos de 

datos construidos para probar un amplio abanico de modelos de machine learning, deep 

learning y transfer learning para conocer el método más competente para identificar las 

células Nosema. Este proceso tiene como objetivo establecer un modelo simplificado, 

rápido y fiable para el reconocimiento de los esporos. 

4. Creación y implementación de modelos: Implementar un algoritmo automático para 

el conteo y diagnóstico de Nosema utilizando el modelo establecido en el paso anterior. 

Si bien la metodología propuesta en este proyecto se aplicó a las imágenes de la 

enfermedad de Nosema, sus principios fundamentales siguen siendo versátiles y 

aplicables a otras categorías de imágenes, siempre y cuando se ajusten a los mismos 

criterios estadísticos. Esta adaptabilidad subraya el potencial impacto más amplio del 

enfoque propuesto en el análisis de imágenes y el reconocimiento de patrones. 
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I.4 Metodología 

Este trabajo es parte de la frontera de dos disciplinas: microbiología y procesamiento de 

imágenes. Buscamos desarrollar un protocolo metodológico adaptado a la detección e 

identificación de células de la enfermedad de Nosema en las imágenes microscópicas 

mediante nuevas herramientas de procesamiento de imágenes. Es fundamental adoptar 

una estrategia de análisis coherente desde la adquisición de imágenes hasta la 

extracción de información relevante. 

El conjunto de datos utilizado en esta investigación se obtuvo del “Centro de 

Investigación Nacional de Apicultura Tropical” (CINAT), perteneciente a la Universidad 

Nacional de Costa Rica. 

En primer lugar, se presenta el conjunto de datos de imágenes a estudiar (origen, datos 

y estructura de las mismas, etc.). Trabajamos con un total de 400 imágenes 

microscópicas agrupadas en archivos de 7, las cuales fueron previamente etiquetadas 

según el nivel de infección (muy leve, leve, moderada, semi-severa, semi-fuerte, fuerte 

y muy fuerte). 

En segundo lugar, la construcción de un conjunto de datos de subimágenes DS1 derivado 

del conjunto de datos original, este conjunto de datos se utiliza posteriormente para el 

cálculo de características de sus imágenes, se aplicaron las técnicas de segmentación de 

imágenes, caracterización de objetos y, en consecuencia, el nacimiento de un nuevo 

conjunto de datos de características. llamado DS2. 

En tercer lugar, se reprodujeron y aplicaron automáticamente varios sistemas de 

clasificación a cada conjunto de datos para el reconocimiento de las esporas de Nosema. 

Capítulo II: Análisis y Segmentación de Imágenes Microscópicas 

2.1 Introducción 

Después de presentar nuestras motivaciones, hipótesis, objetivos y estado del arte en 

el Capítulo 1, describiremos en este Capítulo 2 la primera parte de nuestro método para 

identificar las células de Nosema. Esta primera parte consiste en la extracción de objetos 

que existen en imágenes microscópicas para: 



                   
 Identification Of Nosema Cells Using Microscopic Images 

134 
 

1. Construir la base de datos de subimágenes de objetos extraídos de las imágenes 

principales y que son imágenes RGB. Estas subimágenes se utilizarán en la 

identificación de Nosema según las técnicas de transferencia de conocimientos 

del capítulo 3. 

2. Preprocesarlos y segmentarlos para calcular su característica más útil que bien 

pueda caracterizar y definir un objeto en una imagen microscópica y así construir 

una segunda base de datos en forma de archivo Excel para luego utilizarla en el 

reconocimiento de Nosema utilizando las técnicas de CNN y SVM en el capítulo 

3.  

El preprocesamiento y preparación para la segmentación de objetos extraídos de estas 

imágenes, así como la segmentación de imágenes en escala de grises y colores, y estos 

principios básicos, se han detallado bien en este capítulo. Estos últimos están 

condicionados por criterios de brillo y textura de las imágenes microscópicas estudiadas. 

Así, proponemos en el contexto de esta tesis un algoritmo de segmentación 

autoadaptable al contexto de la imagen que utilizamos en esta tesis. La originalidad de 

este algoritmo es que tiene capacidades de genericidad, flexibilidad y adaptabilidad a la 

variabilidad de contextos. 

2.2 Creación de DS1 (el primer Base de Datos) a partir de subimágenes 

extraídas de imágenes microscópicas 

En base a los problemas detallados más adelante, concluimos que, si hacemos el 

procesamiento de la imagen microscópica completa, muchas de las células de Nosema 

desaparecerán o serán consideradas como ruido en la imagen, y también objetos que 

tengan una forma cercana a la de Nosema. serán consideradas como células de Nosema. 

Es por eso que decidimos estudiar primero las características de estas células recortando 

la imagen de la célula de la imagen digital (ver figura 7.1). 
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Figura 7.1 Ejemplo de extracción de conjunto de datos para células de Nosema y otros 

objetos que existen en las imágenes microscópicas 

Se selecciona la región de interés (ROI), por lo que para ello se ha desarrollado un 

sencillo algoritmo semiautomático para capturar la imagen de la celda, indicando y 

recortando nuestro ROI, y luego, se preprocesa automáticamente para detectar la forma 

de la célula. Dado que nuestras imágenes están cargadas por muchos objetos y se puede 

decir que son muy borrosas y ruidosas, seleccionamos la celda de Nosema, recortando 

una imagen de Nosema que está claramente aislada de otros objetos y asegurándonos 

de que solo se extraiga la fuente potencial de información para el estudiar, 

preferiblemente; un área, lo más pequeña posible, donde haya una celda aislada (ver 

Figura 7.2). Por lo tanto, cada subimagen de células de Nosema contiene solo una celda 

clara. El mismo trabajo se aplica a los objetos que no se consideran células de Nosema. 

Sobre la base de los pasos descritos anteriormente, se creó una base de datos DS1 que 

contiene un total de 2000 imágenes de muestra. DS1 consta de 1000 muestras de 

imágenes de células de Nosema y 1000 imágenes, que no se consideran células de 

Nosema (es decir, cualquier otro objeto existente en imágenes microscópicas). La Figura 

A.2 a continuación describe el proceso de construcción de DS1. 
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Figura 7.2 Construcción de la base de datos de imágenes: contiene tanto los tipos de 

objetos Nosema (N) como el nombre Nosema (n-N) 

2.3 Segmentación automática y extracción de características: Creación 

de un conjunto de datos DS2 de características extraídas: 

Es necesaria una etapa de preprocesamiento antes de la extracción de las 

características. El punto inicial es una imagen RGB. El primer paso es convertir la imagen 

de RGB a una imagen en escala de grises. El segundo paso consiste en la binarización de 

la imagen mediante la creación de umbrales mediante el método Otsu. En el tercer paso, 

la operación de relleno por inundación se usó en píxeles de fondo de la imagen binaria 

de entrada para llenar el agujero del objeto desde sus ubicaciones específicas y luego 

ignorar todos los objetos más pequeños existentes en la imagen del objeto deseado. 

Como paso final, el perímetro del objeto se mejora mediante el método de dilatación. 

Entonces, la forma deseada del objeto se obtiene calculando la diferencia entre las dos 

imágenes, antes y después de la mejora del perímetro. El resultado del paso final es una 

imagen de forma, que se extrajo de la subimagen del conjunto de datos (ver Figura 7.3). 

 



                   
 Identification Of Nosema Cells Using Microscopic Images 

137 
 

Figura 7.3. Resultados de la forma de dos ejemplos antes y después del 

preprocesamiento. La primera muestra es Nosema y la segunda es un objeto no 

Nosema. 

De la imagen de la forma, se extrajeron en total 9 características. Describen la estructura 

de la celda de Nosema y constan de 6 características geométricas y 3 estadísticas. 

Además, a partir de las subimágenes extraídas, se calcularon 6 características de textura 

y 4 características de color de matrices de co-ocurrencia de nivel de gris (GLCM). 

Una vez extraídas las características de los diferentes objetos, se genera el conjunto de 

datos de características: consta de 19 características para 2000 objetos, es decir, un 

valor de 38000 dividido en partes iguales entre dos tipos de objetos: uno para las 

características calculadas de los objetos de interés. (Células de Nosema), y el otro para 

otro objeto existente en las imágenes microscópicas. Esta parte del trabajo fue 

significativamente exigente desde el punto de vista informático, ya que la extracción de 

2000 subimágenes, así como el cálculo de 19 funciones para cada imagen, costó muchos 

días de cálculos, utilizando una CPU, en particular, PcCom Basic Elite Pro Intel Core i7-

9700. / 8GB / 240SSD. 

Capítulo III: Reconocimiento de Nosema 

3.1 Introducción 

En este capítulo, explicaremos nuestro enfoque para identificar las células de Nosema o 

diferenciarlas de los objetos que existen con ellas en la misma imagen microscópica. 

Aparece una noción de clase de celda, que intuitivamente, requiere saber si los métodos 

clásicos de clasificación de formas pueden caracterizar las celdas, y dar un buen 

resultado, luego compararlas con los métodos más recientes de clasificación de objetos. 

Aquí, nos enfocamos en el uso de herramientas de aprendizaje ANN y SVM como 

métodos de clasificación clásicos, herramientas de aprendizaje profundo de CNN y 

herramientas de transferencia de conocimiento como AlexNet, VGG-16 y VGG-19 como 

métodos modernos en la clasificación de objetos. Para el primer tipo de métodos 

utilizaremos los vectores de características extraídos de los objetos estudiados y para el 

segundo tipo de métodos utilizaremos las imágenes RGB de los objetos estudiados. La 

elección de las arquitecturas Transfer Learning se basó en una prueba de muchos tipos 
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de arquitecturas y las que dieron los mejores resultados fueron elegidas para ser 

estudiadas en esta tesis. 

En este capítulo hemos señalado que el reconocimiento de una celda se puede realizar 

por varios métodos, pero, a modo de comparación, mostraremos cuál es el método de 

identificación más útil. 

3.2 Estrategia 1: Reconocimiento de esporas de Nosema con 

procesamiento de imágenes y aprendizaje automático 

En este capítulo, se utilizaron redes neuronales para la detección automática de 

enfermedades Nosema en abejas. Las redes neuronales demostraron su calidad en 

muchas aplicaciones del mundo real, así como para tareas de clasificación. Por lo 

general, una red neuronal se compone de dos partes que constituyen el conjunto de 

funcionalidades de aprendizaje utilizadas para entrenar el modelo NN, mientras que un 

conjunto de funciones de prueba se utiliza para verificar la corrección del modelo NN 

entrenado. Se debe configurar el diseño de red adecuado, incluido el tipo de red, el 

método de aprendizaje y con una o dos capas ocultas. En la fase de aprendizaje, los 

pesos de conexión siempre se actualizaron hasta que alcanzaron el número de iteración 

definido o el error aceptable. Por lo tanto, la capacidad del modelo ANN para responder 

con precisión se aseguró utilizando el criterio del error cuadrático medio (MSE) para 

enfatizar la validez del modelo entre la entrada y la salida de la red. Además, la red 

calcula las salidas y ajusta automáticamente los pesos para reducir errores y reconocer 

los objetos. 

Para el experimento, el conjunto de datos se dividió en una parte de aprendizaje del 

modelo y otra parte de prueba y validación. Durante el enfoque propuesto, se llevaron 

a cabo dos tipos de experimentos: en el primero, el modelo se probó con solo las 15 

características geométricas, estadísticas y de textura sin contar las características de 

color amarillo calculadas con el GLCM. El segundo experimento se implementó 

concatenando las 19 características. Además, estos dos experimentos se realizaron para 

demostrar la fuerte presencia de color amarillo en la célula de Nosema. Los 

experimentos se realizaron aplicando una precisión diferente de la división de datos 

entre los datos para el entrenamiento y los datos para las pruebas. El experimento se 
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realizó con varias arquitecturas de redes neuronales diferentes; en particular, se ha 

experimentado con el número de neuronas en la capa oculta. Cada prueba se repitió al 

menos 30 veces para obtener el valor óptimo de precisión en el reconocimiento del 

éxito. En primer lugar, el programa se probó con una cantidad de neuronas igual a la 

cantidad de características de entrada extraídas de las imágenes (15 o 19) en las que se 

agrega el peso de forma aleatoria, y después de eso, se aumentó la cantidad de 

neuronas en el oculto. capa por 50 en cada nuevo experimento. 

3.3 Estrategia 2: Reconocimiento de esporas de Nosema mediante 

enfoques de aprendizaje profundo 

Experimento 1 

Otro enfoque para trabajar con aprendizaje profundo es utilizar una red neuronal 

profunda previamente entrenada. Para el primer enfoque, la ventaja es su estructura; 

Se utiliza un modelo de una red neuronal profunda ya existente mediante la aplicación 

de algunos cambios simples. En el último caso, se utiliza un conjunto de datos limitado 

y el conocimiento se transfiere de este modelo a una nueva tarea. También se dice que 

transfiere las características aprendidas de una CNN previamente entrenada a un nuevo 

problema con un conjunto de datos limitado. El aprendizaje de transferencia implica 

formar una CNN con datos de origen etiquetados disponibles (llamado alumno de 

origen) y luego extraer las capas internas que representan una representación genérica 

de entidades de nivel medio para un alumno de CNN de destino. Se agrega una capa de 

adaptación al alumno de CNN de destino para corregir las diferentes distribuciones 

condicionales entre los dominios de origen y destino. Los experimentos se realizan sobre 

la clasificación de la imagen del objeto, donde la precisión media se mide como una 

medida de rendimiento. El primer experimento se realizó utilizando el conjunto de datos 

Pascal VOC 2007 como objetivo e ImageNet 2012 como fuente. El segundo experimento 

se realizó utilizando el base de datos Pascal VOC 2012 como objetivo de ImageNet 2012 

como fuente. Las pruebas han demostrado con éxito la capacidad de transferir 

información de un alumno de CNN a otro. Los modelos preajustados utilizados en este 

trabajo son AlexNet, VGG16 y VGG19. En comparación con publicaciones anteriores 

encontradas en la literatura, nuestro método fue rico, variado y diferente en términos 
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de las características calculadas de la celda, los clasificadores utilizados, los conjuntos 

de datos adoptados y la precisión de éxito obtenida que es mayor que la encontrada en 

la literatura. (96,25%). Por otro lado, esto confirma el mérito de las herramientas de 

aprendizaje profundo en el reconocimiento de imágenes de Nosema, que se asume en 

la Hipótesis en la sección de introducción de esta tesis. 

Experimento 2 

En el secundo, nos interesamos en modelos ajustados para realizar más experimentos 

para el reconocimiento de Nosema. Estos experimentos utilizan un nuevo entorno de 

trabajo con Python 3.7.9 amd64 y una máquina equipada con un i7-9700/8GB y un 

procesador GPU. 

El objetivo de este experimento es utilizar muchos y varios modelos de ajuste fino que 

implican un número cada vez mayor de épocas para mejorar la precisión de 

reconocimiento de Nosema tanto como sea posible. De hecho, la primera parte de los 

experimentos se realiza simplemente ajustando los modelos previamente entrenados y 

la segunda fase se realiza explotando la eficiencia del aumento de datos para aumentar 

la precisión del reconocimiento. En este experimento, ajustamos alrededor de 19 

modelos de transferencia de aprendizaje que son: EfficientNetB0, EfficientNetB1, 

EfficientNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6, 

EfficientNetB7, InceptionResNetV2, InceptionV3, MobileNet, MobileNetV2, ResNet50, 

ResNet50v2, ResNet101, ResNet152V2, VGG16, VGG19 y Xception. 

La metodología aprobada es la siguiente: 

1- Comenzó con el Entrenamiento de los modelos durante 50 épocas. Tenga en cuenta 

que la convergencia puede tardar hasta 50 épocas dependiendo de la elección de la tasa 

de aprendizaje. Si no se aplicaron capas de aumento de imagen, la precisión de 

validación solo puede alcanzar ~60%. 

2- Después del entrenamiento, elimine los modelos que tengan una precisión inferior al 

96,25% (que es la precisión más alta en los experimentos anteriores) y conserve los 

demás. 
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3- Realizar un segundo experimento entrenando los modelos conservados aprobando 

un número de épocas igual a 100. 

4- Durante el experimento, hubo modelos que decidimos detener su entrenamiento 

antes de alcanzar las 100 épocas porque continúan disminuyendo sus precisiones a lo 

largo de 12 épocas y al mismo tiempo, no superaron el 96,25%, por lo que será inusual. 

para continuar su formación y perder el tiempo. 

5- finalmente, solo se conserva el modelo que tiene mayor ocurrencia en las 100 épocas. 

De hecho, cabe mencionar que todos los modelos comienzan a decrecer antes de 

completar las 100 épocas, por eso no hicimos otro experimento con más de 100 épocas. 

Experimento 3 

En este trabajo, empleamos la técnica de aumento de datos como una tarea importante 

para aumentar los datos de entrenamiento y mejorar la eficiencia del trabajo propuesto. 

Intentaremos evaluar el impacto del aumento de datos en el desarrollo de modelos de 

IA (inteligencia artificial) mejorando el rendimiento de los modelos de aprendizaje de 

transferencia en el reconocimiento de enfermedades. los datos de aumento se aplicarán 

al modelo que dará la mejor precisión. La transformación aplicada a las imágenes de 

Nosema fue de diferentes grados de rotación con un código Python particular. Rotamos 

las imágenes aleatoriamente 20, 30, 60 y 180 grados usando el parámetro de rango de 

rotación. Más tarde, el nuevo conjunto de datos de imágenes fue llamado para 

entrenamiento. Se aplicó una metodología de validación cruzada de 5 veces y el 

entrenamiento se realizó durante 100 épocas. 

3.4 Resultados 

Nuestro objetivo es comparar los resultados entre los enfoques tradicionales de 

clasificación y los enfoques más desarrollados de Transferencia de aprendizaje. 

Comenzamos presentando los resultados de la aplicación de ANN y SVM en base a las 

características calculadas DS1, y los resultados de la aplicación de CNN y los modelos 

reentrenados AlexNet, VGG16 y VGG19 basados en imágenes DS2. Luego, 

examinaremos y discutiremos los resultados de los métodos de clasificación aprobados 
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en esta tesis. Luego mostramos nuestra idea para nuestro artículo que se está 

preparando para conteos de células de Nosema en imágenes microscópicas. 

Una segunda sección definirá nuestro método de segmentación celular a partir de sus 

antecedentes. 

Resultado experimento 1 

Las tablas siguientes muestran los resultados dados tras la aplicación de los 

clasificadores. 

Tabla 7.1: Mejores resultados dados por ANN y SVM. 

Número de 

características 

Clasificador Precisión Observación 

15 Features ANN 79.00% Para 1400 neuronas en la capa oculta 

SVM 81.00% Usando el núcleo RBF 

19 Features ANN 83.20% Para 1400 neuronas en la capa oculta 

SVM 83.50% Usando el núcleo RBF 

 

Tabla 7.2: Mejores resultados de clasificaciones para el clasificador optimizado AlexNet. 

Experimento (datos entrenados, 

el resto para validación) 

Precisión Número de épocas 

0.5 84.58% 6 

0.6 83.98% 6 

0.7 86.98% 6 

0.8 85.28% 6 

 

Tabla 7.3: Mejores resultados de clasificación para clasificadores ajustados VGG16 y 

VGG19 

Experimentos Épocas Precisión 

VGG-16 VGG-19 

0.7 6 76.29% 71.95% 

 6 92.50% 93.00% 

08 12 94.50% 82.00% 

20 96.25% 92.32% 

25 93.00% 93.50% 

0.9 6 88.00% 77.00% 
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se puede concluir que ya sea el conjunto de datos más grande o el conjunto de datos 

más pequeño, el nivel de aprendizaje de la red con modelos de aprendizaje por 

transferencia es obviamente mejor que los modelos tradicionales, especialmente las 

ANN se examinan en este estudio y SVM que acercó los resultados. Además, se observa 

una clara tasa de convergencia del modelo de transferencia VGG-16 y VGG-19 al nivel 

de los resultados proporcionados. Además, estos modelos de transferencia son un poco 

más rápidos que ANN y SVM, al menos en este caso. CNN ha demostrado su eficacia en 

este problema de reconocer o clasificar las células de Nosema como modelo de 

aprendizaje profundo. CNN era casi comparable a VGG-19. Por otro lado, hay que decir 

que las opciones de formación de las RNA, así como los algoritmos de aprendizaje por 

transferencia, marcan la diferencia en los resultados. 

Frente a AlexNet, VGG-16, VGG-19 y CNN han demostrado su fuerte efectividad en este 

trabajo en la clasificación de patrones, celdas y objetos. 

Para la parte de extracción de características, se evaluaron varias características 

diferentes de las subimágenes: características geométricas, estadísticas, textura y GLCM 

extraídas del canal amarillo. Este experimento utilizó una gran base de datos, los 

resultados dados tanto por la ANN como por la SVM son buenos ya que es la primera 

vez. La calidad de las imágenes microscópicas utilizadas en este trabajo no siempre 

ayudó a extraer objetos claros y nítidos. Al calcular los resultados con un número 

diferente de características (15 y 19), se aprobó la importancia de los datos extraídos 

por el GLCM en la mejora resultante. 

Discusión 

Además de las herramientas de procesamiento de imágenes, citamos en la bibliografía 

algunos trabajos recientes que utilizaron simulaciones químicas y corrientes 

tecnológicas para detectar enfermedades de las abejas o alteraciones dentro de las 

colonias de abejas. En esta sección, estamos evaluando nuestro método presentado y 

comparándolo con los trabajos anteriores encontrados en la literatura que solo usaban 

las técnicas de procesamiento de imágenes y visión por computadora para detectar, 

contar o clasificar las esporas de Nosema. 

Resultado experimento 2 
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Las precisiones vienen dadas por una estrategia de validación cruzada de 5 veces. Este 

enfoque consiste en dividir aleatoriamente el conjunto de observaciones en 5 grupos, o 

pliegues, de aproximadamente el mismo tamaño. El primer pliegue se trata como un 

conjunto de validación y el método se ajusta a los 5−1 pliegues restantes. Cada resultado 

particular de una carpeta en particular se proporcionó en forma de un modelo de 

precisión, un modelo de pérdida y una matriz de confusión que muestran la precisión 

exacta de la carpeta. Después de eso, se calculó la precisión media para tener la 

precisión final del modelo ajustado. La tabla describe los resultados de 100 épocas. 

Tabla 7.4: Resultados de modelos ajustados con 100 épocas 

Modelos afinados Épocas Pesos Congelados % De precisión 

media 

EfficientNetB0 100 4.049.571 95.84±0.87 

EfficientNetB1 90 6.575.239 96.29±0.86 

EfficientNetB2 100 7.768.569 95.59±1.19 

EfficientNetB3 80 42.658.176 94.89±0.66 

EfficientNetB7 60 64.097.687 93.63±0.65 

ResNet50 70 23.587.712 95.84±1.32 

ResNet50V2 60 58.370.944 96.59±1.06 

ResNet101 70 42.658.176 95.94±0.51 

MobileNet 90 3.228.864 95.04±0.66 

MobileNetV2 90 2.257.984 96.34±0.64 

VGG16 100 14.714.688 97.64±0.75 

VGG19 100 20.024.384 96.79±0.58 

 

El modelo ajustado VGG16 ofrece la máxima precisión en el reconocimiento de Nosema. 

Hay que decir que hemos conseguido aumentar la precisión del reconocimiento de las 

células de Nosema en un 1,39 % (anteriormente era del 96,25 %). Ahora, la tercera fase 

de este experimento es aplicar datos de Aumento al modelo que brinda la mejor 

precisión de reconocimiento (VGG16) para estimar las habilidades de este último en la 

mejora de la predicción de los modelos ajustados. 
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Resultado de experimento 3 

La transformación aplicada a las imágenes de Nosema fue de diferentes grados de 

rotación con un código Python particular. Rotamos las imágenes aleatoriamente 20, 30, 

60 y 180 grados usando el parámetro de rango de rotación. Más tarde, el nuevo conjunto 

de datos de imágenes fue llamado para entrenamiento. Se aplicó una metodología de 

validación cruzada de 5 veces y el entrenamiento se realizó durante 100 épocas. VGG16 

está afinado como antes. 

Como resultado, el método propuesto logró una precisión media del 99,35 %, lo que 

muestra una mejora del 1,71 % en comparación con el VGG16 ajustado sin datos de 

aumento. Además, la precisión más alta proporcionada por el modelo de ajuste fino 

VGG16 fue del 99,70 % con el particular 2 veces usando una rotación de +30 º de las 

imágenes mostrando una mejora del 3,45 % en comparación con el primer experimento 

realizado anteriormente. 

Capitulo IV: Algoritmo automático para la identificación y conteo de 
Nosema 

Resumen  

Este capítulo adopta un enfoque nuevo y diferente. De hecho, el trabajo en este capítulo 

es totalmente automático. Más concretamente, para determinar el estadio de la 

enfermedad, las células serán identificadas dentro de la imagen microscópica principal 

y recogidas. Un algoritmo automático contará las células enfermas en la imagen 

microscópica para clasificarlas como muy suaves, leves, moderadas, semi-fuerte o 

fuertes. Este enfoque implementado ayuda a racionalizar el proceso de detección. 

Los hallazgos del algoritmo automático Nosema coinciden con el número real de células 

en las imágenes microscópicas estudiadas. El conteo manual de células en imágenes 

microscópicas puede diferir ligeramente entre las personas, con variaciones que a 

menudo no superan 1 o 2 células. Por ejemplo, un individuo puede contar 42 células en 

la misma imagen mientras que otro puede contar 43 células. Esta diferencia menor no 

tiene efecto en el análisis general de la imagen. En el experimento, se ejecutó un código 

sobre un conjunto de imágenes microscópicas seleccionadas aleatoriamente. Ninguna 

de las imágenes analizadas fue categorizada incorrectamente por el algoritmo; el 
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sistema todavía detecta un número de células dentro del rango requerido del tipo de 

imagen de entrada, y el número dado es casi igual al número contado manualmente. 

Aunque persiste la posibilidad de errores de categorización, se puede decir con 

confianza que la tasa de error es extremadamente baja en el 0,01%. Con esta suposición, 

podemos afirmar que la exactitud de la identificación de Nosema de este algoritmo 

automatizado se espera que sea del 99,99%. Intentamos ser sinceros, y el éxito ahora 

tiene la mayor precisión en comparación con todas las obras anteriores. Además, el 

algoritmo funciona eficazmente a través de los niveles, con gran precisión, y sus 

predicciones se han confirmado para todos los niveles indicados. La precisión observada 

para el nivel de "fuerza" no es del 100%, y esto se puede atribuir a los retos asociados 

con la calidad de las imágenes microscópicas. La presencia de un número significativo 

de objetos en las imágenes, posiblemente afectando la claridad o introduciendo ruido, 

plantea una dificultad para el algoritmo en dar con precisión el número verdadero de 

células Nosema en la imagen. A pesar de este desafío, el algoritmo sigue demostrando 

notable precisión, indicando su eficacia en presencia de tales complejidades. Los 

esfuerzos en curso para abordar las preocupaciones de calidad de la imagen pueden 

mejorar aún más el rendimiento del algoritmo para este nivel en particular. 

Capítulo V: Conclusiones 

Síntesis 

Como principal conclusión de esta tesis doctoral, se han logrado los objetivos 

inicialmente marcados y se ha hecho un algoritmo automático de reconocimiento de 

Nosema. La hipótesis inicialmente establecida en esta tesis se confirmó, y se 

implementó un algoritmo automático, y es eficaz en el logro de su propósito previsto, 

que es el diagnóstico de la enfermedad de Nosema. El algoritmo implementado en esta 

tesis difiere de los encontrados en la literatura porque se basa en una variedad de 

procesamiento de imágenes y herramientas de aprendizaje profundo.  

El trabajo presentado en esta tesis se caracteriza por un flujo cohesivo y progresivo, 

conectando sin problemas del capítulo 2 al capítulo 4, asegurando un desarrollo lógico 

e integrado de ideas y metodologías: 

-Esta tesis ha propuesto un enfoque de segmentación para imágenes microscópicas de 

la enfermedad de Nosema. Este método de segmentación proporciona un conjunto de 
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herramientas operativas que permite extraer de forma automática y robusta las 

características más útiles de la célula Nosema. 

-Para el cálculo de las características, se han adaptado morfologías matemáticas y 

binarias, por lo que este método agrupa varios tipos de parámetros que pueden 

caracterizar un objeto en una imagen microscópica; estos parámetros se refieren a su 

forma, color y textura como se mostró en el capítulo 2. 

-Para el reconocimiento de las células Nosema de los otros objetos en la imagen 

microscópica, se aprobaron dos vías. El primer método es identificarlos utilizando sus 

características calculadas basadas en los sistemas de clasificación ANN y SVM. La 

segunda forma es clasificar las imágenes entre Nosema y no-Nosema, basándose en 

herramientas de aprendizaje profundo (CNN). En el Capítulo 3, existen varios modelos 

de aprendizaje de transferencia y datos de ampliación que sugieren que el aprendizaje 

en transferencia es más exitoso en las tareas de reconocimiento e identificación. La 

combinación del modelo de aprendizaje de transferencia VGG16 y la ampliación de 

datos mejora la precisión de detección de células de enfermedad hasta el 99,70%. 

-Finalmente, en el capítulo 4, se implementó el algoritmo totalmente automático para 

la detección y el conteo de Nosema desde el fondo de la imagen alcanzando una 

exactitud del 99,99% en la contabilidad y el diagnóstico de los Nosema. El algoritmo 

automático muestra un rendimiento encomiable en la tarea de diagnóstico, 

demostrando una alta precisión en varios niveles de severidad: Mild, Moderate, Semi-

strong, y Strong. El algoritmo consigue constantemente tasas de precisión del 100% para 

los niveles 'Mild', 'Moderate' y 'Semi-strong', mostrando su robustez en la clasificación 

precisa de instancias dentro de estas categorías. Aunque la precisión para el nivel de 

"fuerza" está ligeramente por debajo del 100%, atribuido a los desafíos relacionados con 

la calidad de las imágenes microscópicas y la abundancia de objetos, la exactitud del 

algoritmo sigue siendo notable.  

Estos hallazgos sugieren que el algoritmo automático es una herramienta valiosa para la 

tarea de diagnóstico, con posibles aplicaciones en la clasificación precisa de diferentes 

niveles de gravedad. 

Trabajos futuros 
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Exploración de métodos alternativos para la detección e identificación de las células de 

la enfermedad. Un enfoque potencial podría implicar la eliminación de la red de conteo 

de las imágenes microscópicas. Este ajuste podría conducir a una determinación más 

precisa del número de células detectadas. La caracterización de la red de conteo en las 

imágenes se realizará basándose en su naturaleza de frecuencia y utilizando la filtración 

en el FFT (Fast Fourier Transfer) (Cooley & Tukey, 1965). La preparación de la imagen 

para el conteo de células (preprocesamiento), se obtiene borrando la rejilla 

manteniendo intactas las células en la imagen. Este método se basa en la sustitución de 

la firma de la red en el FFT. Los objetivos para lograr futuras obras serán los siguientes:  

- La ausencia de intervención humana para el procesamiento de imágenes. El método 

propuesto para la caracterización y el borrado de la red tiene la ventaja de no requerir 

ningún ajuste manual. Esta ventaja se obtiene buscando la firma de la rejilla en el espacio 

de Fourier: en este espacio, esta firma tiene una anchura constante de un píxel 

independientemente de la imagen. 


