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To Sila and Iniesta

The fundamental cause of the trouble is that in the modern world the stupid are
cocksure while the intelligent are full of doubt.

The Triumph of Stupidity
Bertrand Russell
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Abstract

This work presents the test and assessment of the FastSLAM method, an
algorithm to solve the SLAM problem. The SLAM (Simultaneous Localization
And Mapping) problem is that of acquiring an enviroment map with a roving
robot, while simultaneously localizing the robot relative to this map.

FastSLAM [93] is one of the most modern approaches to the SLAM problem
that is based on particle filtering, showing several advantages over classical
methods based on Kalman Filters (KF). Using a clever factorization of the
SLAM problem, the complexity of the FastSLAM method is linear, or even
logarithmic, with the number of features in the environment, where the com-
plexity of KF-based methods is exponential. Moreover, the method is robust,
since it can recover from wrong data associations, a problem that causes
KF-based methods to diverge.

A testbed of different environments has been defined to evaluate the per-
formance and results of FastSLAM. With a proper configuration [38], ex-
periments have been done in both simulated and real environments using a
mobile robot equipped with a range laser sensor. In both cases we analyze the
applicability of the method to build sufficiently accurate maps in real time.

This document also provides a profuse literature review of SLAM methods
and their ramifications in Robotics. We introduce the theoretical and math-
ematical foundations, to later describe contemporary approaches to solve the
SLAM problem. The results and conclusions obtained are equivalent to those
described by the authors of the method, hightlighting its applicability for real
office-like environments operating in real time.

Resumen

En el presente trabajo se prueba y evalúa el método FastSLAM, un algoritmo
para resolver el problema de SLAM. El problema de SLAM (Simultaneous
Localization And Mapping) consiste en construir un mapa del entorno en el
que se mueve un robot, localizando al mismo tiempo al robot dentro del mapa
que se está construyendo.

FastSLAM es una de las últimas aportaciones dentro del ámbito de inves-
tigación de SLAM [93]. Haciendo uso de ciertas propiedades del problema,
se consigue factorizarlo de modo que la complejidad del método es lineal,
o incluso logaŕıtmica, con respecto al número de caracteŕısticas detectadas
en el entorno, frente a la complejidad exponencial de otros métodos basados
en filtros de Kalman. Además, el método es robusto, siendo capaz de recu-
perarse frente a asociaciones de datos incorrectas, un hecho que provoca la
divergencia de los métodos basados en filtros de Kalman.

Se han definido varios entornos de prueba con la finalidad de evaluar el fun-
cionamiento y los resultados del algoritmo FastSLAM. Partiendo de una con-
figuración adecuada del algoritmo [38], se han realizado experimentos tanto
simulados como en entornos reales con un robot móvil equipado con un sensor
de rango láser. En ambos casos se analiza la aplicabilidad del método para
construir mapas suficientemente precisos en tiempo real.

Este documento también aporta una profusa revisión bibliográfica de los
métodos de SLAM y sus ramificaciones dentro del campo de la Robótica.
Se introducen los fundamentos teóricos y la base matemática, para poste-
rioremente describir las técnicas más modernas empleadas para resolver el
problema de SLAM. Los resultados y conclusiones obtenidos son equivalentes
a los expuestos por los autores del método, pudiendo constatarse la aplicabil-
idad del método en entornos de oficina reales operando en tiempo real.
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Notation

xt = (x y θ)T pose of the robot with location (x y)T and orientation θ at time t
ut = (v ω)T robot control with translational v and rotational ω velocities comanded

zt sensor observation at time t

Yt FastSLAM particle set at time t

Y [k]
t k-th FastSLAM particle at time t
M number of particles

N
[k]
t number of landmarks detected up to time t of the k-th particle

µ
[k]
j,t,Σ

[k]
j,t j-th landmark EKF (mean, covariance) of the k-th particle

i
[k]
j,t j-th landmark counter (times seen) of the k-th particle

w
[k]
t importance weight of the k-th particle
ĉ index of Maximum Likelihood landmark

zt − ẑj measurement innovation of j-th landmark

h(µ[k]
j,t−1, x

[k]
t ) measurement model

h′(µ[k]
j,t−1, x

[k]
t ) Jacobian of measurement model

h−1(zt, x
[k]
t ) inverse measurement model

g(x[k]
t−1, ut) motion model

xt[k] ∼ p(xt | x[k]
t−1, ut) sampling from motion model probability distribution

Qt linearized measurement noise
Rt linearized motion noise
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Chapter 1

Introduction

The problem of Simultaneous Localization and Mapping (SLAM) has attracted
immense attention in the Robotics literature. SLAM addresses the problem of
a mobile robot moving through an environment of which no map is available a
priori. The robot makes relative observations of its ego-motion and of objects in
the environment, both corrupted by noise. The goal of SLAM is to reconstruct a
map of the world and the path taken by the robot. SLAM is considered by many
to be a key prerequisite to truly autonomous robots [93].

The estimation of the robot path is a straightforward localization problem if the
true map of the environment is available. Similarly, mapping is relatively simple if
the robot path is known. When both the robot path and the map are unknown,
localization and mapping must be considered concurrenty. Hence the problem is
coined Simultaneous Localization and Mapping (SLAM), and less frequently Con-
current Mapping and Localization (CML).

1.1 The SLAM Problem

First and foremost, robot environments are inherently unpredictable. While the de-
gree of uncertainty in well-structured environments such as assembly lines is small,
environments such as highways and private homes are highly dynamic and in many
ways highly unpredictable. Furthermore, sensors are limited in what they can per-
ceive. Limitations arise from several factors, e.g. the range and resolution of a
sensor is subject to physical limitations. The uncertainty of the information ob-
tained from the measurement sensor and the robot odometry is the main factor
that complicate the SLAM process. For this reason, most SLAM techniques are
probabilistic.

The chicken-or-egg relationship between localization and mapping is a conse-
quence of how errors in the robot’s sensor readings are corrupted by errors in the
robot’s motion. Since the robot pose estimate is corrupted by motion noise, the
perceived locations of objects in the environment ar, in turn, corrupted by both
measurement noise and the erro in the estimated pose of the robot. Montemerlo
states it plainly in [93]: error in the robot’s path correlates errors in the map. Con-
sequently, the true map cannot be estimated accurately without also estimating the
true path of the robot. The relationship between localization and mapping was first
identified by Smith and Cheeseman [134] in 1987.

5



6 1 Introduction

If robots are to operate autonomously extreme environments underwater, under-
ground or on the surface of other planets, they must be capable of building maps
and navigating reliably according to these maps. Unfortunately, the relationship be-
tween robot path error and map error does make the SLAM problem harder to solve
in principle. Clearly, as the robot pose becomes more uncertain, the uncertainty in
the estimated positions of observed landmarks also increases. Motion uncertainty
is due to typical odometry noise, which is the consequence of wheel imperfections,
drifting, slipping, etc. Whereas range laser are very precise but they perform poor
with reflective and transparent surfaces, such as mirrors and glasses.

The ability to transform raw measurements into high level semantic concepts
is still an open problem. Fortunately, it is possible to extract simple geometric
elements, such as points and lines. These features cannot represent all types of
environments though. They are suitable for office environments, but they are inap-
propiate for forests or the land. The type of landmarks to make a map of, is a topic
that has attracked the interest of the research community [26, 27, 30].

The features detected in the environment with the measurement sensors must
be compared with the landmarks in the map that is being built. This problem is
known as data association and it is probably the most complex problem in SLAM.
Observed features must be transformed form the robot frame to the global frame of
the map. The uncertainty in the robot pose may cause incorrect data associations.
Measurement information is also used to estimate the robot pose, which in sum
may lead to divergence in the estimation of both the robot path and the location
of landmarks in the map.

1.1.1 The FastSLAM algorithm

There exist a number of approaches to solve the SLAM problem. In the present
work we will focus in a family of algorithms known as FastSLAM [93]. FastSLAM
exploits the relationship between the robot path error and map error to factor the
SLAM problem into a set of much smaller problems that can be solved efficiently.
Especially, it uses N+1 estimators, one estimator over robot paths and N indepen-
dent estimators over landmark positions, each conditioned on the path estimate.
The algorithm uses a particle filter ot approximated the factored SLAM problem
with M particles, each of them carrying a robot path hypothesis, along with its
map.

Put in brief, the first step of the FastSLAM is to propose a new robot pose xt for
each particle that is consistent with the previous pose xt−1 and the new control ut.
Next, a landmark filter in each particle that corresponds with the latest observation
is updated. Each particle is given an importance weight, and a new set of samples
is drawn according to these weights. Such importance resampling step corrects for
the fact that it selects particles with good estimations and discard the rest. As
a result, the algorithm converges asymptotically to the true robot pose and map,
while it still manage the uncertainty in both.

There exist two versions of FastSLAM. In the present work we focus on the first
version, coined FastSLAM 1.0. Meanwhile, FastSLAM 2.0 is a modified version
that corrects some of the problems of the former. Both versions scale efficiently
to large maps and is robust to significant ambiguity in data association. However,
these and other state-of-the-art SLAM algorithms assume a static environment.
Unfortunately, the world is highly dynamic because of non-structural elements such
as people or moving objects, and structural elements such as doors or any furniture
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that may change its position. SLAM research in dynamic environment is still an
open problem.

1.2 Thesis Statement

This dissertation involves the following thesis:

It is possible to map structured indoor environments by means of the
detection of basic geometric features, such as lines and corner points,
using a robot equiped with a range laser sensor. Both the full and online
SLAM problems can be solved with the family of FastSLAM algorithms.
They make real time mapping feasible with sufficient accuracy in fairly
large environments and abundance of landmarks.

The field of SLAM is very extense, so we have to constraint it under some
assumptions to make it tractable. More details will be given in the description of
the experiments performed, in Section 11.2.

Motion We will use a robotic differential drive platform that moves in a plane. The
motion is denoted by the translational v and rotational ω velocities, which
can be infered using the odometry.

Perception The robot will obtain measurements of the environment using a range
laser sensor. It provides precise information that suffices to detected features
in structured indoor environments.

Environment The experiments will take place in structured indoor environments
that can be described with basic geometric features. In particular, we will only
manage lines and corner points between them. We assume the environment
is static, not dynamic.

Landmark As mentioned above, the landmarks considered to construct the map of
the environment are lines and corner points. Such features are easily extracted
from range laser scan with state of the art feature extraction methods.

Data It is possible to test the SLAM algorithm with real and simulated data. We
consider both in online and offline, i.e. for real time or batch mode using data
logs, respectively. Furthermore, the environment might be real or synthetic,
if they are designed ad hoc for the quantitative evaluation of the algorithm.

1.3 Thesis Outline

This thesis will present the SLAM problem and a detailed description of FastSLAM
algorithms. The document provides an unified review of a number of topics related
with SLAM research. Recursive state estimators are described as they are the
mathematical foundation of most SLAM algorithms and particularly of FastSLAM.
The FastSLAM algorithm presented is based on features extracted from range laser
scans, thus an important part of this thesis is concerned with feature extraction
methods. An implementation of the FastSLAM 1.0 algorithm is evaluated with
a number of experiments and metrics, leading to conclusions equivalent to those
mentioned in the literature. The text is organized in five major parts:
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• Chapters 2 through 4 introduce the basic mathematical framework for recur-
sive state estimation. After a general introduction to Bayes filtering, most
common state estimators are described, both parametric and nonparametric.
They are the basis of the FastSLAM family of algorithms. These chapters are
the mathematical foundation of the SLAM algorithms described throughout
this thesis.

• Chapters 5 and 6 present probabilistic models of mobile robots as described in
[149]. They cover the motion and measurement models, which are essential
components of filter algorithms. In many ways, these chapters are the prob-
abilistic generalization of classical robotic models and they form the robotic
foundation for the material that follows.

• The basic feature extraction methods for range laser scans aimed to detect
both lines and corner points are analyzed in Chapter 7. Next, Chapter 8
discusses the data association problem, which is a crucial step in the process
of incorporating new features into the map from robot observations.

• Chapters 9 and 10 introduce the mapping field in Robotics and discuss some
of the classical solutions. Chapter 9 describes the SLAM problem with the
perspective of the joint estimation of the map and the path of the robot.
Although some classical SLAM algorithms will be presented, the thesis will
focus in a particular family of algorithms, the FastSLAM algorithms, discussed
in detail throughout Chapter 10.

• Chapter 11 enumerates the experiments and metrics applied to evaluate the
FastSLAM algorithm. A thoroughly evaluation yields some results and con-
clusions already observed in other works, which are discussed in Chapter 12.
Similarly, Chapter 13 discusses some of the possible improvements and current
fields open to research.

Most of the first chapters of this document supply the mathematical founda-
tions and theorical concepts that constitute the basis of the SLAM algorithms later
discussed. Each chapter is self-explantory, but it might employ concepts introduced
in previous chapters. For this reason, the thesis is best read in order. Depending
on the reader background some chapters, enumerated in the sequel, are not com-
pulsory notwithstanding. The dissertation includes the mathematical derivation of
some topics. Sections with that name might be skipped on first reading without
compromising the coherence of the overall material.

The introduction to recursive state estimation may be skipped if the reader has
a good probabilistic and filtering background. The same applies for the discus-
sion about parametric and nonparametric filters, which are focused on Kalman and
Particle filters, respectively. Contrary, robot motion and measurement models are
encourage to be read because a probabilistic generalization of classical models is
devised.

Although SLAM dissertations are rarely concerned with feature extraction, we
present state-of-the-art feature extractors for laser scans aimed to detect lines and
corner points. This chapter tries to summarize and gather most common algorithms,
that the reader might already known. The problem of pairing observations and
landmarks, known as data association problem, introduces the basics to understand
one of the main problems concerning SLAM, so only experts on the subject may
skip this chapter.
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Therefore, the expert reader may go directly to the chapters about mapping and
SLAM. Even more, those who are familiar with SLAM might start directly with the
FastSLAM chapter, but this is generally not recommended.





Chapter 2

Recursive State Estimation

2.1 Introduction

At the core of probabilistic robotics is the idea of estimating state from sensor
data. Stata estimation addresses the problem of estimating quantities from sensor
data that are not directly observable, but that can be inferred. In most robotic
applications, determining what to do is relatively easy if one only knew certain
quantities. For example, moving a mobile robot is relatively easy if the exact location
of the robot and all nearby obstacles are known. Unfortunately, these variables are
not directly measurable. Instead, a robot has to rely on its sensors to gather this
information. Sensors carry only partial information about those quantities, and
their measurements are corrupted by noise. State estimation seeks to recover state
variables from the data. Probabilistic state estimation algorithms compute belief
distributions over possible world states. An example of probabilistic state estimation
is mobile robot localization.

The goal of this chapter is to introduce the basic concepts and mathematical
tools for estimating state from sensor data.

• Section 2.2 introduces basic probabilistic concepts used throughout the thesis.

• Section 2.3 describes our formal model of robot environment interaction,
setting forth some of the key terminology used throughout the thesis.

• Section 2.4 introduces Bayes filters, the recursive algorithm for state estima-
tion that forms the basis of virtually every technique presented in this thesis.

2.2 Probability

The theory presented in this chapter summarizes the basic notation and probabilistic
facts used in this thesis, as appears in [149]. In probabilistic robotics, quantities
such as sensor measurements, controls, robot pose and even the environment are
modeled as random variables. A random variable can take on multiple values, and random variable

it does so according to specific probabilistic laws. Let X denote a random variable
and x a specific value that X might assume. If the space of all values that X
can take on is discrete, the probability that the random variable X has value x is

11
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denoted with
p(X = x) (2.1)

Discrete probabilities sum to one∑
x

p(X = x) = 1 (2.2)

and are always non-negative, i.e. p(X = x) ≥ 0. To simplify the notation we will
use the common abbreviation p(x) instead of writing p(X = x).

Most mapping techniques address estimation in continuous spaces, which are
characterized by random variables that can take on a continuum of values. We
assume that all continuous random variables possess a probability density functionprobability density

function (PDF), unless explicitly stated. A common density function is that of the one-
dimensional normal distribution with mean µ and variance σ2. The PDF of anormal distribution

normal distribution is given by the following Gaussian functiongaussian

p(x) =
1√

2πσ2
e
−

1
2

(x− µ)2

σ2 (2.3)

=
(

2πσ2

)−1
2 exp

{
−1

2
(x− µ)2

σ2

}
(2.4)

We will frequently abbreviate them as N (x;µ, σ2), which specifies the random
varible x, its mean µ and variance σ2.

The normal distribution in (2.3) assumes that x is scalar. Often, x will be a
multi-dimensional vector. Normal distributions over vectors are called multivariate.multivariate

Multivariate normal distributions are characterized by density functions of the form

p(x) =
∣∣2πΣ

∣∣−1
2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.5)

Here µ is the mean vector and Σ is a positive semidefinite and symmetric matrix
known as the covariance matrix —its determinant is therefore non-negative, i.e.covariance matrix ∣∣Σ∣∣ ≥ 0.

Just as discrete probability distributions always sum up to 1, a PDF always
integrates to 1, that is ∫

p(x) dx = 1 (2.6)

Throughout this document we will use the terms probability, probability density
and probability density function interchangeably. We will assume that all continu-
ous random variables are measurable and that all continuous distributions possess
densities.

The joint distribution of two random variables X and Y is given byjoint distribution

p(x, y) = p(X = x and Y = y) (2.7)

If X and Y are independent, we haveindependent

p(x, y) = p(x) p(y) (2.8)
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Sometimes, random variables carry information about other random variables.
If we already know that Y ’s value is y and we would like to know the probability
that X’s value is x conditioned on that fact, such probability is denoted

p(x | y) = p(X = x | Y = y) (2.9)

and is called conditional probability . If p(y) > 0, then the conditional probability is conditional probability

defined as

p(x | y) =
p(x) p(y)
p(y)

(2.10)

Actually, if X and Y are independent, we have

p(x | y) =
p(x) p(y)
p(y)

= p(x) (2.11)

In such a case, Y tells us nothing about he value of X. Independence, and its
generalization known as conditional independence, plays a major role in the SLAM
algorithm discussed in the present work.

An interesting fact, which follows from the definition of conditional probability
and the axioms of probability measures, is often referred to as Theorem of total theorem of total

probabilityprobability

p(x) =
∑
y

p(x | y) p(y) (discrete) (2.12)

p(x) =
∫
p(x | y) p(y) dy (continuous) (2.13)

Equally important is Bayes rule, which relates a conditional of the type p(x | y) bayes rule

to its inverse p(y | x).

p(x | y) =
p(y | x) p(x)

p(y)
=

p(y | x) p(x)∑
x′ p(y | x′) p(x′)

(discrete) (2.14)

p(x | y) =
p(y | x) p(x)

p(y)
=

p(y | x) p(x)∫
p(y | x′) p(x′) dx′

(continuous) (2.15)

If x is a quantity that we would like to infer from y, the probability p(x) will be
referred to as prior probability distribution and y is called the data —e.g. sensor prior probability

distributionmeasurement. The distribution p(x) summarizes the knowledge we have regarding
X prior to incorporating the data y. The probability p(x | y) is called the posterior posterior probability

distributionprobability distribution over X. As (2.15) suggests, Bayes rule provides a conve-
nient way to compute a posterior p(x | y) using the inverse conditional probability
p(y | x) along with the prior probability p(x). In Robotics, the probability p(y | x)
is often coined generative model , since it describes how variables X cause sensor generative model

measurement Y .
The denominator p(y) of Bayes rule does not depend on x. Thus, the factor

p(y)−1 in (2.14) and (2.15) will be the same for any value x in the posterior
p(x | y). For this reason, p(y)−1 is often written as a normalizer in Bayes rule
variable generically denoted η

p(x | y) = ηp(y | x) p(x) (2.16)
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We will simply use the normalization symbol η to indicate that the final result has
to be normalized to 1.

It is perfectly fine to condition any of the rules discussed thus far on arbitrary
random variables, such as Z. For instance, conditioning Bayes rule on Z = z gives
us

p(x | y, z) =
p(y | x, z) p(x | z)

p(y | z)
(2.17)

as long as p(y | z) > 0.
Similarly, we can condition the rule for combining probabilities of independent

random variables (2.8) on other variables z

p(x, y | z) = p(x | z) p(y | z) (2.18)

Such a relation is known as conditional independence. It is easy to verify thatconditional
independence (2.18) is equivalent to

p(x | z) = p(x | z, y) (2.19)

p(y | z) = p(x | z, x) (2.20)

Conditional independence plays an important role in probabilistic robotics, since
it applies whenever a variable y carries no information about a variable x if another
variable’s value z is known. Conditional independence does not imply absolute
independence

p(x, y | z) = p(x | z) p(y | z) ; p(x, y) = p(x) p(y) (2.21)

The converse is also in general untrue: absolute independence does not imply con-
ditional independence

p(x, y) = p(x) p(y) ; p(x, y | z) = p(x | z) p(y | z) (2.22)

In special cases, conditional and absolute independence may coincide.
A number of probabilistic algorithms require us to compute statistics of proba-

bility distributions. The expectation of a random variable X is given byexpectation

E[X] =
∑
x

x p(x) (discrete) (2.23)

E[X] =
∫
x p(x) dx (continuous) (2.24)

The expectation is a linear function of a random variable

E[aX + b] = aE[X] + b (2.25)

for arbitrary numerical values a and b. The covariance of X is obtained as follows

Cov[X] = E[X − E[X]]2 = E[X2]− E[X]2 (2.26)

The covariance measures the squared expected deviation from the mean µ, for a
normal distribution N (x;µ,Σ).
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2.3 Robot Environment Interaction

The environment, or world, is a dynamical system that possesses internal state. environment

the robot can acquire information about its environment using sensors. However,
sensors are noisy and many things cannont be sensed directly. As a consequence, the
robot maintains an internal belief of the state of the environment. The robot can
also influence the environment through its actuators. The effect of doing so is often
somewhat unpredictable. Thus, each control action affects both the environment
state and the robot’s internal beleif of such state.

2.3.1 State

Environments are characterized by state, which is the collection of all aspects of the state

robot and its environment that can impact the future. State that canges over time
will be called dynamic state, which distinguishes if from static state or non-changing static state

state. State will be denoted x, and consequently the state at time t will be referred
to as xt. Typical state variables are:

• The robot pose, which comprises its location and orientation relative to a pose

global coordinate frame.

• The robot velocity is commonly referred to as dynamic state. dynamic state

• The location and features of surrounding objects in the environment are also
state variables. Features of such objects may be their visual appearance. In
this work we consider the location of objects in the environment is static.
In some problems, objects will assume the form of landmarks, which are landmarks

distinct, stationary features of the environment that can be recognized reliably.
Landmarks also denote objects in the environment used for navigation.

• The location and velocities of moving objects and people are also potential
state variables. This entities possess their own kinematic and dynamic state.

• There are many other state variables, such as the level of the battery charge,
sensor health, etc. The list of potential state variables is endless.

A state xt will be called complete if it is the best predictor of the future. complete

Completeness entails that knowledge of past states, measurements, or controls carry
no additional information that would help us predict the future more accurately. The
future may be stochastic, but no variables prior to xt may influence the stochastic
evolution of future states, unless this dependence is mediated through the state
xt. Temporal processes that meet these conditions are commonly known as Markov markov chains

chains.
In practice, it is impossible to specify a complete state for any realistic robot

system. Practical implementations single out a small subset of all state variables,
such as the ones listed above. Such a state is called incomplete state. In most incomplete state

robotics applications, the state xt is continuous, but it may be also discrete. State
spaces that contain both continuous and discrete variables are called hybrid state
spaces. In most cases, state changes over time. In this document we consider
that time is discrete, i.e. all events will take take place at discrete time steps
t = 0, 1, 2, . . ..
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2.3.2 Interaction

There are two fundamental types of interaction between a robot and its environment.
The robot can influence the state of its environment through its actuators, and it
can gather inforamation about the state through its sensors.

Environment measurement Perception is the process by which the robot uses
its sensors to obtain information about the state of its environment. The
result of such a perceptual interaction is known as a measurement, althoughmeasurement

we will sometimes also call it observation or percept. Measurements provide
information about a momentary state of the environment. The measurement
at time t will be denoted zt. Throughout this thesis, we simply assume that
the robot takes only one measurement at a time, for clarity reasons. The
notation

zt1:t2 = {zt1 , zt1+1, zt1+2, . . . , zt2} (2.27)

denotes the set of all measurements acquired from time t1 to time t2, for
t1 ≤ t2. If t1 = 1 and t2 = t, we will use the more compact notation
zt ≡ z1:t, which represent all measurements up to time t.

Control Control actions change the state of the world. Control data carry infor-
mation about the change of state in the environment. In mobile robotics,
a typical example of control data is the velocity of a robot. An alternative
source of control data are odometers. Odometers are sensors that measureodometers

the revolution of a robot’s wheels. They convey information about the change
of state. Even though odometers are sensors, we will treat odometry as con-
trol data, since they measure the effect of a control action. Control data is
denoted ut, which corresponds to the change of state in the time interval
(t− 1, t]. As before, we denote sequences of control data by

ut1:t2 = {ut1 , ut1+1, ut1+2, . . . , ut2} (2.28)

for t1 ≤ t2. Similarly, if t1 = 1 and t2 = t, we will use the more compact
notation ut ≡ u1:t, which represent all controls up to time t. Since the
environment may change even if a robot does not execute control actions, we
assume that there is exactly one control data item per time step t, including
do-nothing as legal action.

The distinction between measurement and control is crucial. Environment per-
ception provides information about the environment’s state, hence it tends to in-
crease the robot’s knowledge. Motion, on the other hand, tends to induce a loss
of knowledge due to the inherent noise in robo actuation and the stochasticity of
robot environments.

2.3.3 Probabilistic Generative Laws

The evolution of state and measurements is governed by probabilistic laws. In gen-
eral, the state xt is generated stochastically from the state xt−1. The probabilistic
law characterizing the evolution of state might be given by a probability distribu-
tion of the form p(xt | xt−1, zt−1, ut). Notice that we assume here that the robot
executes a control action ut first, and then takes a measurement zt. If the state
xt is complete then it is a sufficient summary of all that happened in previous time
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steps. Thus, from all variables in the expression above, only the control ut matters
if we know the state xt−1

p(xt | xt−1, zt−1, ut) = p(xt | xt−1, ut) (2.29)

One might also want to model the process by which measurements are being
generated. Again, if xt is complete, we have an important conditional independence

p(zt | xt, zt−1, ut) = p(zt | xt) (2.30)

xt−1 xt xt+1

ut−1 ut ut+1

zt−1 zt zt+1

Figure 2.1: Dynamic Bayes Network that characterizes the evolution of states xt ,

controls ut and measurements zt

Therefore, the two resulting conditional probabilities are p(xt | xt−1, ut) and
p(zt | xt). The probability p(xt | xt−1, ut) is the state transition probability . It state transition

probabilityspecifies how environmental state evolves over time as a function of robot controls
ut. The probability p(zt | xt) is called the measurement probability . It specifies measurement

probabilitythe probabilitic law according to which measurements zt are generated from the
environment state xt. Measurements are better thought as noisy projections of the
state.

The state transition probability and the measurement probability together de-
scribe the dynamical stochastic system of the robot and its environment. Figure 2.1
illustrates the evolution of states and measurements, defined through those proba-
bilities. The state at time t is stochastically dependent on the state at time t − 1
and the control ut. The measurement zt depends stochastically on the state at
time t. Such a temporal generative model is alos known as Hidden Markov Model
(HMM) or Dynamic Bayes Network (DBN). dynamic bayes network

2.3.4 Belief Distributions

A belief reflects the robot’s internal knowledge about the state of the environment. belief

That state cannot be measured directly, so the robot must infer such state. We
therefore distinguish the true state from its internal belief with regards to that state.
Probabilistic robotics represents beliefs through conditional probability distributions.
A belief distribution assigns a probability to each possible hypothesis with regards
to the true state. Belief distributions are posterior probabilities over state variables
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conditioned on the available data. We will denote the belief over a state variable
xt by bel (xt), which is an abbreviation for the posterior

bel (xt) = p(xt | zt, ut) (2.31)

which is the probability distribution over the state xt at time t, conditioned on all
past measurements zt and all past controls ut.

Occasionally, it will prove useful to calculate a posterior before incorporating the
last measurement zt, just after executing the control ut. Such a posterior will be
denoted

bel (xt) = p(xt | zt−1, ut) (2.32)

which is often referred to as prediction in the context of probabilistic filtering. Thisprediction

terminology reflects the fact that bel (xt) predicts the state at time t based on
the previous state posterior, before incorporating the measurement zt at time t.
Calculating bel (xt) from bel (xt) is called correction or measurement update.correction

2.4 Bayes Filters

The most general algorithm for calculating beliefs is given by the Bayes filter al-bayes filter

gorithm, shown in Algorithm 1. This algorithm calculates the belief distribution
bel (xt) from measurement and control data. The Bayes filter is recursive, i.e. the
belief bel (xt) at time t is computed from the belief bel (xt−1) at time t−1. A single
iteration of the algorithm is known as the update rule, which is applied recursivelyupdate rule

to calculate the belief bel (xt) from the belief bel (xt−1) at t − 1, along with the
most recent control ut and measurement zt.

Algorithm 1 Bayes Filter

Require: Belief bel(xt−1) over state xt−1 in the previous temporal step and control
ut and measurement zt obtained in the current temporal step.

Ensure: Belief bel(xt) over state xt in the current temporal step.
Algorithm: BayesFilter(bel(xt−1), ut, zt) return bel(xt)

1: for all xt do

2: bel(xt) =
∫
p(xt | ut, xt−1) bel(xt−1) dxt−1

3: bel(xt) = η p(zt | xt) bel(xt)
4: end for
5: return bel(xt)

The Bayes filter algorithm has two essential steps. The first update step is called
the control update or prediction. In line 2, the control ut is processed by calculatingprediction

a belief over the state xt based on the prior belief over state xt−1 and ut. The
second step is called measurement update. In line 3, the Bayes filter algorithmmeasurement update

multiplies the belief bel (xt) by the probability that the measurement zt may have
been observed. The result is normalized, leading to the final belief bel (xt).

To compute the posterior belief recursively, the algorithm requires an initial
belief bel (x0) at time t = 0 as boundary condition. If the value of x0 is known with
certainty, bel (x0) should be initialized with a point mass distribution that centers all
probability mass on x0 and assigns zero probability anywhere else. Otherwise, if x0
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is completely unknown, then bel (x0) may be initialized using a uniform distribution
over the domain of x0. Partial knowledge of x0 can be expressed by non-uniform
distributions, but this case is uncommon in practice.

The Bayes filter algorithm can only be implemented in the form stated here
for very simple estimation problems. In particular, we either need to carry out the
integration in line 2 and the multiplication in line 3 in closed form, or we need to
restrict ourselves to finite state spaces, so that the integral in line 2 becomes a finite
sum. For this reason, the two following chapters will discuss different approaches
to implement the Bayes filter in practice. In general robotics problems, beliefs have
to be approximated. The nature of the approximation has important ramifications
on the complexity of the algorithm. Finding a suitable approximation is usually a
challenging problem, with no unique best answer for all robotics problems. One has
to trade off a range of properties:

1. Computational efficiency. Some approximations, such as Gaussian approx-
imations discussed in Chapter 3 make it possible to calculate beliefs in time
polynomial in the dimension of the state space, while others may require ex-
ponential time. Particle-based techniques, discussed in Section 4.2, have an
any-time characteristic, enabling them to trade off accuracy with computa-
tional efficiency.

2. Accuracy. Some approximations can approximate a wider range of distribu-
tions more tightly than others. For example, linear Gaussian approximations
are limited to unimodal distributions, whereas histogram representations can
approximate multi-modal distributions, albeit with limited accuracy. Particle
representations can approximate a wide set of distributions, but the number
of particles needed to attain a desired accuracy can be large.

3. Ease of implementation. The difficulty of implementation depends on a
variety of factors, such as the form of the measurement probability p(zt | xt)
and the state transition probability p(xt | xt−1, ut). Particle representations
often yield surprisingly simple implementations for complex nonlinear systems.

2.4.1 Markov Assumption

The Markov assumption postulates that past and future data are independent if markov assumption

one knows the current state xt. There exist a number of factors that may have
a systematic effect on sensor readings, such as unmodeled dynamics not included
in xt, inaccuracies in the probabilistic models p(zt | xt) and p(xt | xt−1, ut),
approximation errors due to approximate representations of belief functions, and so
on. Thus, they induce violations of the Markov assumption.

In principle, many of these variables can be included in state representations, but
incomplete state representations are often preferable to reduce the computational
complexity of the Bayes filter algorithm. In practice, Bayes filters are surprisingly
robust to such violations. As a general rule of thumb one should exercise care
when defining the state xt, so that the effect of unmodeled state variables has
close-to-random effects [149].





Chapter 3

Parametric Filters

3.1 Introduction

This chapter describes an important family of recursive state estimators called
Gaussian filters. Guassian techniques all share the basic idea that beliefs are repre- gaussian filters

sented by multivariate normal distributions

p(x) =
∣∣2πΣ

∣∣−1
2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(3.1)

This density over the variable x is characterized by two sets of parameters µ and
Σ. The mean µ is a vector that possesses the same dimensionality as the state x.
The covariance is a quadratic matrix that is symmetric and positive-semidefinite,
with dimension equal to the dimensionality of the state x squared. Gaussians are
unimodal, i.e. they possess a single maximum. Such posterior is characteristic of
many tracking problems in Robotics, in which the posterior is focused around the
true state with a small margin of uncertainty. However, they are a poor match for
many global estimation problems in which many distinct hypotheses exist.

The parametrization of a Gaussian by its mean µ and covariance Σ is called the
moments parametrization, becuase the mean and covariance are the first and sec- moments

parametrizationonde moments of a probability distribution. There exists an alternative parametriza-
tion called canonical parametrization or natural parametrization. The moments and canonical

parametrizationthe canonical parametrizations are best thought of as duals: what appears to be
computationally easy in one parametrization is involved in the other, and vice versa.
The filters that rely on a fixed functional form of the posterior, having a parametriza-
tion, are clasified as Parametric Filters. We will only discuss Gaussians filters for parametric filters

reasons commented in the sequel. Most of the theorical foundations of such filters
have been taken from [149], that might be useful as a complementaty reading.

3.2 The Kalman Filter

In 1960, Kalman published his famous paper describing a recursive solution to the
discrete-data linear filtering problem [73]. Since that time the Kalman filter has
been the subject of extensive research and application, particularly in the area of
autonomous or assited navigation. They are the classical approach to generating

21
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maps and to a certain extent they are part of comtemporary SLAM methods [147].
The Kalman Filter (KF) is a Bayes filter that the belief with a normal distribution.kalman filter

It estimates the state of a process, in a way that minimizes the mean of the squared
error [159].

3.2.1 Linear Gaussian Systems

The Kalman filter was invented as a technique for filtering and prediction in linear
Gaussian systems. The Kalman filter implements belief computation for continuous
states and it is not applicable to discrete state spaces. It estimates the state xt ∈ <n
of a discrete-time controlled process that is governed by the a linear stochastic
differential equation. Posteriors are Gaussian if the following three properties hold,
in addition to the Markov assumptions of the Bayes filter.

1. The state transition p(xt | ut, xt−1) must be a linear function in its arguments
with added Gaussian noise. This is expressed by the equation

xt = Atxt−1 +Btut + εt (3.2)

where xt and xt−1 are state vectors, and ut is the control vector at time t.
At is a square matrix of size n × n, where n is the dimension of the state
vector xt. Bt is a matrix of size n × m, with m being the dimension of
the control vector ut. By multiplying the state and control vector with the
matrices At and Bt, respectively, the state transition function becomes linear
in its arguments. Thus, Kalman filters assume linear system dynamics. For
this reason, the filter is also called Linear Kalman Filter (LKF) in some texts.linear kalman filter

The random variable εt in (3.2) is a Gaussian random vector that models the
uncertainty introduced by the state transition. It is of the same dimension as
the state vector, with mean 0 and covariance Rt. A state transition probability
p(xt | ut, xt−1) of the form (3.2) is called a linear Gaussian to reflect that itlinear gaussian

is linear in its arguments with additive Gaussian noise

p(xt | ut, xt−1) =

∣∣2πRt∣∣−1
2 exp

{
−1

2
(xt −Atxt−1 −Btut)TR−1

t (xt −Atxt−1 −Btut)
}

(3.3)

2. The process must be observable and the measurement probability p(zt | xt)
must also be linear in its arguments, with added Gaussian noise

zt = Ctxt + δt (3.4)

where Ct is a matrix of size k × n, with k being the dimension of the mea-
surement vector zt. The vector δt describes the measurement noise with a
multivariate Guassian distribution with zero mean and covariance Qt. The
measurement probability p(zt | xt) is thus given by the following multivariate
normal distribution

p(zt | xt) =
∣∣2πQt∣∣−1

2 exp
{
−1

2
(zt − Ctxt)TQ−1

t (zt − Ctxt)
}

(3.5)
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3. Finally, the initial belief bel (x0) must be normally distributed. We will denote
the mean of this belief by µ0 and the covariance by Σ0

bel (x0) = p(x0) =
∣∣2πΣ0

∣∣−1
2 exp

{
−1

2
(x0 − µ0)TΣ−1

0 (x0 − µ0)
}

(3.6)

The three assumptions above are sufficient to ensure that the posterior bel (xt)
is always a Gaussian for any point in time t. The reader is invited to consult the
proof of this non-trivial result in [149].

3.2.2 The KF Algorithm

Kalman filters represent the belief bel (xt) at time t by the mean µt and the covari-
ance Σt. The input of the Kalman filter is the belief bel (xt−1) at time t − 1, the
control ut and the measurement zt, as shown in Algorithm 2. The output is the
belief at time t. The Kalman filter estimates a process by using a form of feedback
control since it first estimates the state x̄t and then obtains feedback in the form
of the measurement zt, which is used to correct the estimation. Therefore, the
equations of the Kalman filter fall into two groups. The time update or prediction prediction

equations, that are responsible for projecting forward in time the current state mean
µt−1 and covariance Σt−1 estimates to obtain the a priori estimates µ̄t and Σ̄t for
the next time step. And the measurement update or correction equations, that are correction

responsible for the feeback, i.e. for incorporating a new measurement zt into the
a priori estimate to obtain an improve a posterior estimate represented by µt and
Σt. The final estimation algorithm resembles that of a predictor-corrector algorithm
[159].

Algorithm 2 Kalman Filter

Require: Mean µt−1 and covariance Σt−1 obtained in the previous temporal step,
that will be corrected using the control ut and observation zt of the current
step.

Ensure: Mean µt and covariance Σt filtered.
Algorithm: KF(µt−1, Σt−1, ut, zt) return µt, Σt

. Prediction:
1: µ̄t = Atµt−1 +Btut
2: Σ̄t = AtΣt−1A

T
t +Rt

. Correction:
3: Kt = Σ̄tCTt

(
CtΣ̄tCTt +Qt

)−1
. Kalman Gain

4: µt = µ̄t +Kt (zt − Ctµ̄t)
5: Σt = (I −KtCt) Σ̄t
6: return µt, Σt

In lines 1 and 2, the predicted belief bel (xt), represented by µ̄t and Σ̄t, is
calculated before incorporating the measurement zt. This belief is obtained by
incorporating the control ut. The mean is updated using the state transition function
(3.2). The update of the covariance considers the fact that states depend on
previous states through the linea matrix At.

The belief bel (xt) is then transformed into the desired belief bel (xt) in lines
3 through 5, by incorporating the measurement zt. The variable Kt computed in
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line 3 is called Kalman gain. It specifies the degree to which the measurement iskalman gain

incorporated into the new state estimate, in a way that the reader may consult
in the mathematical derivation given in [149]. Line 4 manipulates the mean by
adjusting it in proportion to Kt and the innovation, which is the difference betweeninnovation

the actual measurement zt and the expected Ctµ̄t. The new covariance of the
posterior belief is computed in line 5, adjusted for the information gain resulting
from the measurement.

The Kalman filter is computationally quite efficient, since after each predictor-
corrector step, the process is repeated with the previous a posteriori estimates used
to project the new a priori estimates. This recursive nature is one of the very
appealing features of the Kalman filter, that makes it more feasible than other
filters like the Weiner filter, which is designed to operate on all of the data directly
for each estimate [21]. The Kalman filter instead recursively conditions the current
estimate on all of the past measurements.

3.3 The Extended Kalman Filter

The assumptions that the observations are linear functions of the state and that the
next state is a linear function of the previous state are crucial for the correctness
of the Kalman filter. Unfortunately, state transitions and measurements are rarely
linear in practice [149]. The Extended Kalman filter (EKF) relaxes the linearityextended kalman filter

assumption.

3.3.1 Linearization

Here the assumption is that the state transition probability and the measurement
probabilities are governed by nonlinear functions g and h [33, 147, 149, 159], re-
spectively

xt = g(ut, xt−1) + εt (3.7)

zt = h(xt) + δt (3.8)

This model strictly generalizes the linear Gaussian model underlying Kalman
filters. The function g replaces the matrices At and Bt in (3.2), and h replaces
the matrix Ct in (3.4). Unfortunately, with arbitrary functions g and h, the belief
is no longer a Gaussian. The key idea underlying the EKF approximation is called
linearization. It approximates the nonlinear function g by a linear function thatlinearization

is tangent to g at the mean of the Gaussian. A similar linearization is applied to
h. There exist many techniques for linearizing nonlinear functions. EKFs utilize a
method called (first order) Taylor expansion. It constructs a linear approximationtaylor expansion

to a function g from its value and slope. The slope is given by the partial derivate
with repect to the state. Hence, the nonlinear functions g and h have the form

g(ut, xt−1) ≈ g(ut, µt−1) + g′(ut, µt−1)(xt−1 − µt−1)
= g(ut, µt−1) +Gt(xt−1 − µt−1) (3.9)

h(xt) ≈ h(µ̄t) + h′(µ̄t)(xt − µ̄t)
= h(µ̄t) +Ht(xt − µ̄t) (3.10)

where the Gt is the Jacobian of the state transition model and Ht is the Jacobian
of the measurement model. Gt is a matrix of size n × n, with n denoting the
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dimension of the state. The value of Gt depends on ut and µt−1, hence it differs
for different points in time. Similarly, Ht is a matrix of size n× n and depends on
µ̄t. The reader interested in a more detailed explanation of the linearization and
the mathematical derivation of the EKF might consult [149].

3.3.2 The EKF Algorithm

The Algorithm 3 computes the Extended Kalman filter, that replaces the state
transition and measurement funcions (3.2) and (3.4) with the nolinear functions
(3.9) and (3.10), respectively. This is the main modification introduced in the EKF
algorithm. The mean µ̄t of the predicted state is computed using g in line 1. And
the mean µt of the corrected state is computed using h in line 4.

Algorithm 3 Extended Kalman Filter

Require: Mean µt−1 and covariance Σt−1 obtained in the previous temporal step,
that will be corrected using the control ut and observation zt of the current
step.

Ensure: Mean µt and covariance Σt filtered.
Algorithm: EKF(µt−1, Σt−1, ut, zt) return µt, Σt

. Prediction:
1: µ̄t = g (ut, µt−1)
2: Σ̄t = GtΣt−1G

T
t +Rt

. Correction:
3: Kt = Σ̄tHT

t

(
HtΣ̄tHT

t +Qt
)−1

. Kalman Gain
4: µt = µ̄t +Kt (zt − h (µ̄t))
5: Σt = (I −KtHt) Σ̄t
6: return µt, Σt

The Jacobians Gt and Ht are used to compute the values of the covariances.
The covariance Σ̄t of the predicted state uses Gt instead of At in line 2. And the
covariance Σt of the corrected state uses Ht instead of Ct in line 5. The Kalman
gain Kt is also computed using the Jacobian Ht.





Chapter 4

Nonparametric Filters

4.1 Introduction

A popular alternative to parametric techniques are nonparametric filters. Non- nonparametric filters

parametric filters do not rely on a fixed functional form of the posterior, such as
parametric filters. Instead, they approximate posteriors by a finite number of values,
each corresponding to a region in state space. The quality of the approximation de-
pends on the number of parameters used to represent the posterior. As the number
of parameters goes to infinity, nonparametric techniques tend to converge to the
correct posterior.

This chapter describes a parametric technique that represents posteriors by
finitely many samples, known as particle filter. We also introduce in brief another
approach that decomposes the state into finitely many regions, and represents the
posterior by a histogram. The reader might consult [149] for further reading, since
the contents of the following sections have been taken mostly from it.

Both techniques, histograms and particle filters, do not make strong parametric
assumptions on the posterior density. Thus, they are well-suited to represent mul-
timodal beliefs. For this reason, they are often the method of choice when a robot
has to cope with global uncertainty or hard data association problems that yield
separate, distinct hypotheses.

However, the representational power of these techniques comes at the price of
a higher computational complexity. Fortunately, it is possible to adapt the number
of parameters to the complexity of the posterior. Techniques that can adapt the
number of parameters to represent the posterior online are called adaptive. In
particular, if they can adapt based on the computational resources available for
belief computation, they are called resource-adaptive. They play an important role resource-adaptive

in Robotics, since they enable robots to make decisions in real time, regardless of
the computational resources available. In fact, particle filters are often implemented
as a resource-adaptive algorithm, by adapting the number of particles online [54].

4.2 The Particle Filter

The Particle filter is a nonparametric implementation of the Bayes filter that ap- particle filter

proximate the posterior by a finite number of parameters [149]. Particle filters are

27
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sequential Monte Carlo (MC) methods based on point mass or particle represen-
tations of probability densities [5, 51, 66]. The key idea of the particle filter is to
represent the posterior bel (xt) by a set of random state samples drawn from this
posterior, with associated weights [5, 42]. As the number of particles M becomes
very large, this MC characterization becomes an equivalent representation to the
usual functional description of the posterior and the filter approaches the optimal
Bayesian estimate.

The FastSLAM algorithm discussed in the present work based on a particle
filter to compute the SLAM posterior. Although this will be later discussed in
Chapter 9 and 10, note that the basic FastSLAM algorithm applies most of the
fundamentals introduced here. Furthermore, the FastSLAM 2.0 version uses an
Extended Particle filter (EPF), that incorporates the current measurement zt intoextended particle filter

the proposal distribution, not just the importance weights, in order to better match
the posterior.

4.2.1 Basic Algorithm

In particle filters, the samples of a posterior distribution are called particles and areparticles

denoted

Xt =
{
x

[1]
t , x

[2]
t , . . . , x

[M ]
t

}
(4.1)

Each particle x
[k]
t , with k = 1, . . . ,M , is a concrete instantiation of the state at

time t. Put differently, a particle is a hypothesis as to what the true world state
may be at time t. Here M denotes the number of particles in the particle set Xt.

The most basic variant of the particle filter algorithm is stated in Algorithm 4.
The algorithm first constructs a temporary particle set X̄t that represents the belief

bel (xt). It does this by samping a hypothetical state x
[k]
t from the state transi-

tion distribution p(xt | xt−1, ut) in line 4. Then, line 5 calculates the so-called

importance factor w
[k]
t for each particle state x

[k]
t . The importance is the probabil-importance factor

ity of the measurement zt under the state x
[k]
t , given by p(xt | x[k]

t ). If we interpret

w
[k]
t as the weight of a particle, this yields the set of weighted particles X̄t.

The real trick of the particle filter algorithm starts at line 9. These lines imple-
ment the resampling step. It draws with replacement M particles from the tem-resampling

porary set X̄t. The probability of drawing each particle is given by its importance
weight. After the resampling, the particles are distributed approximately according
to the posterior bel (xt). The resampling step is a probabilistic implementation of
the Darwinian idea of survival of the fittest, since it refocuses the particle set to
regions in state space with high posterior probability. By doing so, it focuses the
computational resources of the filter algorithm to regions in the state space where
they matter the most.

The particle set distribution is depicted in Figure 4.1. The target distribution
p(x) is approximated by a set of particles x̂[k] drawn according with Algorithm 4
discussed above. Initially, samples are drawn from a proposal distribution and then
they are resampled according with the importance weight computed for each tem-
porary particle. In regions where the target distribution is larger than the proposal
distribution, the samples receive higher weights. As a result, samples in this re-
gion will be picked more often. Contrary, in regions where the target distribution
is smaller, the samples will be given lower weights. In the limit of infinite samples,
this procedure will produce samples distributed according to the target distribution.
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Algorithm 4 Particle Filter

Require: Particle set Xt−1 in previous temporal step and control ut and observation
zt obtained in current temporal step.

Ensure: Sample new particles x
[k]
t to construct particle set X̄t in current temporal

step. A resampling process is applied to this set to obtain the final particle set
Xt.

Algorithm: ParticleFilter(Xt−1, ut, zt) return Xt
1: X̄t = Xt = ∅
2: W̄t = ∅
3: for all particle x

[k]
t ∈ Xt−1 do

4: sample x
[k]
t ∼ p(xt | x

[k]
t−1, ut)

5: w
[k]
t = p(zt | x[k]

t )
6: add x

[k]
t to X̄t

7: add w
[k]
t to W̄t

8: end for
9: for all particle x

[k]
t ∈ X̄t do . resampling

10: draw i with probability ∝ w[i]
t

11: add x
[i]
t to Xt

12: end for
13: return Xt

p(x)
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x̂[k] ∼ p(x)

Figure 4.1: Particle filter distribution. Importance sampling draws samples from
the proposal distribution and the resampling step draws particles with probability
proportional to their importance weights

4.2.2 Importance Sampling

The Sequential Importance Sampling (SIS) algorithm is a MC method that forms sequential importance
samplingthe basis for most sequential MC filters developed over the past decades [5, 42, 43,

66]. This sequential MC (SMC) approach is known variously as bootstrap filtering,
the condensation algorithm, particle filter, interacting particle approximations, and
survival of the fittest [5].

Let the state xt of a stochastic process governed by the function

xt = ft(xt−1, εt−1) (4.2)
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possibly nonlinear, where εt−1 is an iid (independent and identically distributed)
noise sequence. The process can be observed according with

zt = ht(xt, δt) (4.3)

also possibly nonlinear, where δt is an iid noise sequence.
In particular, we seek filtered estimates of xt based on the set of all available

measurements zt up to time t. From a Bayesian perspective, the problem is to
recursively calculate some degreee of belief in the state xt at time t given the
measurements zt up to time t. Thus, it is required to construct the posterior
p(xt | zt).

Let
{
xt,[k], w

[k]
t

}M
k=1

denote a set of M particles that characterizes the posterior

p(xt | zt), where
{
xt,[k]

}M
k=1

is a set of states with associated weights
{
w

[k]
t

}M
k=1

,

and let the set of all states xt and all measurements zt up to time t. The weights

are normalized such that
∑M
k=1 w

[k]
t = 1. Then, the posterior at time t can be

approximated as

p(xt | zt) ≈
M∑
k=1

w
[k]
t δ(xt − xt,[k]) (4.4)

where δ( · ) is the Dirac delta function.
We therefore have a discrete weighted approximation to the true posterior

p(xt | zt). The weights are chosen using the principle of importance samplingimportance sampling

[41, 42, 43], which relies on the following. Suppose p(x) ∝ π(x) is a probability
density from which it is difficult to draw samples but for which π(x) can be eval-
uated. In addition, let xk ∼ q(x) for k = 1, . . . ,M be samples that are easily
generated from a proposal q( · ) called an importance density . Then, a weightedimportance density

approximation to the density p( · ) is given by

p(x) ≈
M∑
k=1

w[k] δ(x− x[k]) (4.5)

where

w[k] ∝ π(x[k])
q(x[k])

(4.6)

is the normalized weight of the k-th particle.
Therefore, if the samples xt,[k] were drawn from an importance density

p(xt,[k] | zt), then the weights in (4.4) are defined by (4.6) to be

w
[k]
t ∝

p(xt,[k] | zt)
q(xt,[k] | zt)

(4.7)

Returning to the sequential case, at each iteration one could have samples consti-
tuting an approximation of p(xt−1,[k] | zt−1) and want to approximate p(xt,[k] | zt)
with a new set of samples. If the importance density is chosen to factorize such
that

q(xt,[k] | zt) = q(x[k]
t | xt−1,[k], zt) q(xt−1,[k] | zt−1) (4.8)

then one can obtain samples xt,[k] ∼ q(xt,[k] | zt) by augmenting each of the existing

samples xt−1,[k] ∼ q(xt−1,[k] | zt−1) with the new state x
[k]
t ∼ q(x

[k]
t | xt−1,[k], zt).
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After some operations [5], this yields the following expression to compute the weights

w
[k]
t ∝ w

[k]
t−1

p(zt | x[k]
t ) p(x[k]

t | x
[k]
t−1)

q(x[k]
t | xt−1,[k], zt)

(4.9)

Furthermore, if q(x[k]
t | xt−1,[k], zt) = q(x[k]

t | x
[k]
t−1, zt), then the importance

density becomes only dependent on x
[k]
t−1 and zt. This is particularly useful when

only a filtered estimate of p(xt | zt) is required. In such scenarios, only xkt need be
stored and therefore one can discard the path xt−1,[k] and history of measurements
zt−1. The modified weight is then

w
[k]
t ∝ w

[k]
t−1

p(zt | x[k]
t ) p(x[k]

t | x
[k]
t−1)

q(x[k]
t | x

[k]
t−1, zt)

(4.10)

and the posterior filtered density p(xt | zt) can be approximated as

p(xt | zt) ≈
M∑
k=1

w
[k]
t δ(xt − x[k]

t ) (4.11)

where the weights are defined in (4.10).

Algorithm 5 Sequential Importance Sampling

Require: Particle set Xt−1 with M elements and associated weights Wt−1, and
observation zt.

Ensure: Sequential Importance Sampling (SIS) leaves the sampled particles in the
set Xt with associated weights in Wt.

Algorithm: SIS(Xt−1, Wt−1, zt) return 〈Xt,Wt〉
1: for k = 1 to M do
2: draw x

[k]
t ∼ q(x

[k]
t | x

[k]
t−1, zt) . sample particle

3: w
[k]
t ≈ w

[k]
t−1

p(zt | x[k]
t ) p(x[k]

t | x
[k]
t−1)

q(x[k]
t | x

[k]
t−1, zt)

. assign the particle a weight

4: add x
[k]
t to Xt

5: add w
[k]
t to Wt

6: end for
7: return 〈Xt,Wt〉

The SIS algorithm thus consists of recursive propagation of the weights and
state support points as each measurement is received sequentially. The description
of this algorithm is summarized in Algorithm 5.

An important ramification of the SIS filter in SLAM is the Sampling Importance sampling importance
resamplingResampling (SIR) filter. The SIR filter proposed in [60] is a Monte Carlo method

that can be applied to recurvise Bayesian filtering problems. The assumptions
required to use the SIR filter are very weak:

1. The state dynamics and measurement functions ft and ht in (4.2) and (4.3),
need to be known.

2. It is required to be able to sample from the process noise distritubtion εt−1

and from the prior.
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3. The likelihood function p(zt | xt) needs to be available for pointwise evalua-
tion.

The SIR filter uses the importance density

q(xt | xt−1,[k], zt) = p(xt | xt−1,[k]) (4.12)

and it incorporates a resampling step, which is to be applied at every time index.
For this particular choice of importance density, the weights are given by

w
[k]
t ∝ w

[k]
t−1 p(zt | x

[k]
t ) (4.13)

4.2.3 Practical Considerations and Properties

Density Extraction

The sample sets maintained by particle filters represent discrete approxiamations
of continuous beliefs. The problem of extracting a continuous density from such
samples is called density estimation. There exist several approaches to densitydensity estimation

estimation. The decision of which density extraction technique should be used
depends on the problem at hand.

A simple and highly efficient approach is to compute a Gaussian approximation.
A Gaussian approximation captures only basic properties of a density, and it is only
appropiate if the density is unimodal. Multimodal sample distributions require more
complex techniques such as k-means clustering, which approximates a density using
mixtures of Gaussians.

In an alternative approach, a discrete histogram is superimposed over the state
space and the probability of each bin is computed by summing the weights of the
particles that fall into its range. An important shortcoming of this technique is the
fact that the space complexity is exponentical in the number of dimensions. On the
other hand, histograms can represent multimodal distributions, they can be com-
puted efficiently, and the density at any state can be extracted in time independent
of the number of particles. The space complexity of histogram representations can
be reduced significantly by generating a density tree from the particles.

Kernel density estimation is another way of converting a particle set into a
continuous density. Each particle is used as the center of a so-called kernel, and the
overall density is given by a mixture of the kernel densities. The advantage of this
approach is the smoothness and algorithmic simplicity. However, the complexity of
computing the density at any point is linear in the number of particles, or kernels.

Sampling Variance

An important source of error in the particle filter relates to the variation inherent
in random sampling. Whenever a finite number of samples is drawn from a density,
statistics extracted from these samples differ slightly from those of the original
density. Variability due to random sampling is called the variance of the sampler.variance

Fortunately, the sampling variance decreases with the number of samples. Obviously,
the higher the number of samples results in more accurate approximations with less
variability.
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Resampling

The resampling process is a technique frequently used in conjunction with particle resampling

filters to mitigate the degeneracy problem [5, 41, 42, 43]. A common problem
with the SIS particle filter is the degeneracy problem, where after a few iterations, degeneracy problem

all but one particle will have negligible weight. It has been shown [42] that the
variance of the importance weights can only increase over time, and thus, it is
impossible to avoid the degeneracy phenomenon. This degeneracy implies that a
large computational effort is devoted to updating particles whose contribution to
the approximation p(xt | zt) is almost zero. A suitable measure of the degeneracy
of the algorithm is the effective sample size Neff [5] defined as

Neff =
M

1 + Var(ŵ[k]
t )

(4.14)

where Var(ŵ[k]
t ) is the sampling variance, and

ŵ
[k]
t =

p(x[k]
t | zt)

q(x[k]
t | x

[k]
t−1, zt)

(4.15)

is referred to as the true weight. This cannot be evaluated exactly, but an estimate true weight

of Neff can be obtained by

ESS =
1

M∑
k=1

(
w

[k]
t

)2
(4.16)

which is known as the Effective Sample Size (ESS), where w
[k]
t is the normalized effective sample size

weight obtained using (4.9).
There exist other measure of the degeneracy, which are the Coefficient of Vari- coefficient of variation

ation (CV)

CV =

√√√√ 1
M

M∑
k=1

(
Mw

[k]
t − 1

)2

(4.17)

and even the entropy of the weights H(W), defined as entropy

H(W) = −
M∑
k=1

w
[k]
t log2 w

[k]
t (4.18)

Such metrics are outside the scope of this thesis. The reader might consult [41, 43]
for further insight on them.

Returning to the ESS, notice that ESS ≤ M and that small values of ESS in-
dicates severe degeneracy. There exist a variety of methods to reduce the effect of
degeneracy. The brute force approach uses a very large M , but this is computation-
ally undesirable. More effective methods are a good choice of the importance density
and the use of resampling [5], which is the preferred technique in the present work,
since the FastSLAM method impose an importance density function and recomends
resampling [92, 93, 95, 96, 149].
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The basic idea of resampling is to eliminate particles that have small weights
and to concentrate on particles with large weights. The resampling step involves

generating a new set
{
x̂

[k]
t

}M
k=1

by resampling with replacement M times from an

approximate discrete representation of p(xt | zt) given by

p(xt | zt) ≈
M∑
k=1

w
[k]
t δ(xt − x[k]

t ) (4.19)

so that the probability of drawing a particular particle j is proportional to its weight

P (x̂[k]
t = x

[j]
t ) = w

[j]
t (4.20)

The resulting sample is in fact an iid sample from the discrete density (4.19),

and therefore the weights are now reset to x
[k]
t = 1

M . There exist two important
aspects regarding resampling. Firstly, it is possible to determine when to resample
or not. The resampling step might be performed always or only when the number
of effective particles Neff goes down a fixed threshold. Secondly, one may choose
the type of resampling. There exist a variety of resampling methods, such as se-
quential resampling, which is proposed by the authors of FastSLAM [93, 149], and
stratified resampling. In Section 4.2.4 both resampling methods are discussed in
brief. Resampling methods based on probabilitic foundations outside the scope of
this work, which are developed by Madow in a series of papers [85, 86, 87].

Sampling Bias

The fact that only finitely many particles are used introduces a systematic bias inbias

the posterior estimate. Consider the extreme case of M = 1 particle. The key
insight is that the resampling step deterministically accepts the sample, regardless

of its importance factor w
[k]
t . Thus, the particle filter flatly ignores all measurements

zt. The culprit is the normalization implicit in the resampling step. When sampling

in proportion to the importance weights, in line 10 of Algorithm 4, w
[k]
t becomes

its own normalizer if M = 1

p(draw x
[k]
t ) =

w
[k]
t

w
[k]
t

= 1 (4.21)

In general, the problem is that the non-normalized weights Wt are drawn from
an M -dimensional space, but after normalization they reside in a space of dimension
M − 1. This is because after normalization, the k-th weight can be recovered from
the M − 1 other weights by substracting those from 1. Fortunately, for large values
of M , the effect of loss of dimensionality becomes less pronounced.

Particle Deprivation

Even with a large number of particles, it may happen that there are no particles in
the vicinity of the correct state. This is known as the particle deprivation problem.
It occurs mostly when the number of particles is too small to cover all relevant
regions with high likelihood. However, this ultimately can happen in any particle
filter, regardless of the particle set size M .
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Particle deprivation is a consequence of the variance in random sampling. If we
run the particle filter long enough, it will eventually generate an estimate that is
arbitrarily incorrect. In practice, problems of this nature only tend to arise when M
is small relative to the space of all states with high likelihood.

The quality of the sample based representation increases with the number of
samples. An important question is therefore how many samples should be used for
a specific estimation problem. Unfortunately, there is no perfect answer and it is
often left to the user to determine the required number of samples. As a rule of
thumb, the number of samples strongly depends on the dimensionality of the state
space and the uncertainty of the distributions approximated by the particle filter.

4.2.4 Resampling Methods

We only consider two resampling methods. The sequential resampling, which is
explained in [149], and the stratified resampling. Both resampling techniques yield
similar results. The authors of FastSLAM propose the sequential resampler [93, 149],
although they recommend the stratified resampling method for tracking multiple,
distinct hypotheses, which is mostly the case of the SLAM problem.

Sequential Resampling

The sequential resampling method proposed by Madow [85, 86, 87] is an efficient sequential resampling

probabilistic sampling method easy to implement. It is alos known as systematic
resampling and low variance sampling [149]. The resampling method, when applied
to the particle filter, combines the systematic resampling with the sampling based on
the weights of each particle. Sequential resampling performs a systematic sampling
in the space of probabilities and seeks the a particle with an accumulated probability
greater than the sampled probability.

Algorithm 6 depicts an implementation of the sequential resampling algorithm.
The basic idea is that instead of selecting samples independently of each other
in the resampling process, the selection involves a sequential stochastic process.
This algorithm computes a single random number and selects samples according to
this number but still with a probability proportional to the sample weight. This is
achieved by drawing a random number r in the interval [0,M−1], where M is the
number of samples to be drawn at time t. Then particles are selected by repeatedly
adding the fixed amount M−1 to r and by choosing the particle that corresponds to
the resulting number. Any number U = r+ (m− 1)M−1 in [0, 1] points to exactly
one particle, namely the particle i for which

i = arg min
j

j∑
k=1

w
[k]
t ≥ U (4.22)

The while loop in Algorithm 6 serves two taks, it computes the sum in the
right-hand side of this equation and additionally checks wheter i is the index of the
first particle such that the corresponding sum of weights exceeds U . This process
is also illustrated in Figure 4.2.

The advantage of the sequential resampler is threefold. First, it covers the space
of samples in a more systematic fashion that the independent random sampler.
Second, if all samples have the same importance factors, the resulting sample set
X̄t is equivalent to Xt. Third, the low-variance sampler has a complexity of O (M).
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Algorithm 6 Sequential Resampling

Require: Particle set Xt with M elements and associated weights Wt.
An uniform random number generator rand(a, b) that generates a random num-
ber r ∈ [a, b] is used to sample from Xt.

Ensure: Sequential, systematic or low variance resampling left the sampled par-
ticles in the set X̄t such that the probability of a particle to be resampled is
proportional to its weight.
Sampling M particles requires O (M) time.

Algorithm: Sequential(Xt, Wt) return X̄t
1: X̄t = ∅
2: r = rand(0,M−1)
3: i = 1
4: c = w

[i]
t

5: for all particle xt ∈ Xt do
6: while r > c do
7: i = i+ 1
8: c = c+ w

[i]
t

9: end while
10: add x

[i]
t to X̄t

11: r = r +M−1

12: end for
13: return X̄t

w
[1]
t w

[2]
t

. . . w
[M ]
t

r

r
+

1 M

r
+

2 M . . .
r

+
M
−

1
M

Figure 4.2: Sequential Resampler

Computation time is of essence when using particle filters, and often an efficient
implementation of the resampling process makes a huge diffrence in the practical
performance.

Stratified Resampling

Another popular option is stratified resampling , in which particles are grouped intostratified resampling

subsets. Sampling from these sets is performed in a two stage procedure, as show
in Algorithm 7. First, the number of samples drawn from each subset is determined
based on the total weight of the particles contained in the subset. In the second
stage, individual samples are drawn randomly from each subset using, for example,
low variance resampling or simply random sampling.

Stratified resampling has lower sampling variance and tends to perform well
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Algorithm 7 Stratified Resampling

Require: Particle set Xt with M elements and associated weights Wt.
An uniform random number generator rand(a, b) that generates a random num-
ber r ∈ [a, b] is used to sample from Xt.

Ensure: Stratified or residual resampling left the sampled particles in the set X̄t
such that the probability of a particle to be resampled is proportional to its
weight within a stratum.
Sampling M particles requires O (M) time.

Algorithm: Stratified(Xt, Wt) return X̄t
1: k =

1
M

. stratum separation

2: d1 =
k

2
. first stratum end

3: for i = 2 to M do . construct rest of stratum set
4: di = di−1 + k
5: end for
6: for i = 1 to M do . compute stratified random variables
7: ui = di + rand(−d1, d1)
8: end for

9: c = 1 . index of current stratified random variable
10: for i = 1 to M do

11: while uc <
i∑

m=1

w
[m]
t do

12: add x
[i]
t to X̄t

13: c = c+ 1 . step to next stratified random variable
14: end while
15: end for
16: return X̄t

when a robot tracks multiple, distinct hypotheses with a single particle filter [149].
This is precisely the case of the FastSLAM algorithm discussed in the present work.
Nevertheless, the results obtained with both sequential and stratified are very similar
in practice.





Chapter 5

Robot Motion

5.1 Introduction

This and the next chapter describe the two remaining components for implementing
the filter algorithms described thus far: the motion and the measurement models.
This chapter focuses on the motion model. Motion models comprise the state tran- motion models

sition probability p(xt | xt−1, ut), which plays an essential role in the prediction step
of the Bayes filter. This chapter provides in-depth examples of probabilistic motion
models as they are being used in actual robotics implementations. The subsequent
chapter will describe probabilistic models of sensor measurements p(zt | xt), which
are essential for the measurement update step. The material presented here will be
essential for implementing any of the algorithms described in subsequent chapters,
and it has been taken from [149], which is recommeded as a complementary reading.

5.2 Kinematics

Robot kinematics, which is the central topic of this chapter, has been studied
thoroughly in past decades. However, it has almost exclusively been addressed in
deterministic form. Probabilistic robotics generalizes kinematic equations to the
fact that the outcome of a control is uncertain, due to control noise or unmodeled
exogenous effects. The outcome of a control will be described by a posterior prob-
ability. In doing so, the resulting models will be amenable to the probabilistic state
estimation techniques described in the previous chapters.

Our exposition focuses entirely on mobile robot kinematics for robots operating
in planar environments. In this way, it is much more specific than most contemporary
treatments of kinematics. No model of manipulator kinematics will be provided,
neither will be discuss models of robot dynamics. However, this restricted choice
of material is by no means to be interpreted that probabilistic ideas are limited to
simple kinematic models of mobile robots. Rather, it is descriptive of the present
state of the art, as probabilistic techniques have enjoyed their biggest successes in
mobile robotics using relatively basic models of the types described in this chapter.
The use of more sophisticated probabilistic models —e.g. probabilistic models of
robot dynamics— remains largely unexplored in the literature. Such extensions,
however, are not infeasible. As this chapter illustrates, deterministic robot actuator

39
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models are “probilified” by adding noise variables that characterize the types of
uncertainty that exist in robotic actuation.

In theory, the goal of a proper probabilistic model may appear to accurately
model the specific types of uncertainty that exist in robot actuation and perception.
In practice, the exact shape of the model often seems to be less important than the
fact that some provisions for uncertainty outcomes are provided in the first place. In
fact, many of the models that have proven most successful in practical applications
vastly overestimate the amount of uncertainty. By doing so, the resulting algo-
rithms are more robust to violations of the Markov assumptions, such as unmodeled
state and the effect of algorithmic approximations (see Section 2.4.1). We will
point out such findings in later chapters, when discussing actual implementations
of probabilisitc robotic algorithms.

5.2.1 Kinematic Configuration
kinematics

Kinematics is the calculus describing the effect of control actions on the con-
figuration of a robot. The configuration of a rigid mobile robot operating in planarconfiguration

environments is described by three variables that represent the kinematic state, re-
ferred to as pose in this text. As a consequence of this restriction, the material of
this thesis is restricted to two dimensions.

The pose of a mobile robot operating in a plane is illustrated in Figure 5.1. Itpose

comprises its two-dimensional planar coordinates relative to an external coordinate
frame, along with its angular orientation. Denoting the former as x and y, and the
latter by θ, the pose of the robot is described by the vectorxy

θ

 (5.1)

(0, 0)

y

x

(x, y)

θ

Figure 5.1: Robot Kinematic Configuration, where pose xt = (x, y, θ)T

The orientation of a robot is often called bearing or heading direction. Asorientation

shown in Figure 5.1, we postulate that a robot with orientation θ = 0 points into
the direction of its x-axis, while a robot with orientation θ = π

2 points into the
direction of its y-axis.

Pose without orientation will be called location. The concept of location will belocation

important in which refer to xy coordinates of an object:(
x
y

)
(5.2)
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The pose and the locations of objects in the environment may constitute the
kinematic state xt of the robot-environment system.

5.2.2 Motion Model

The probabilistic kinematic model or motion model plays the role of the state motion model

transition model in mobile robotics. This model is the familiar conditional density

p(xt | xt−1, ut) (5.3)

Here xt and xt−1 are both robot poses and ut is a motion command or control . control

This model describes the posterior distribution over kinematic states that a robot
assumes when executing the control ut at xt−1. For conceptual reasons we will
refer to ut as control, although it is sometimes provided by the robot’s odometry.

This chapter provides in detail two specific probabilistic motion models
p(xt | xt−1, ut), both for mobile robots operating in the plane but complementary
in the type of motion information that is being processed. The first assumes that
the control ut specifies the velocity commands given to the robot’s motors, while
the second model assumes that one has access to odometry information, resulting
a probabilistic model somewhat different from the velocity one.

In practice, odometry models tend to be more accurate than velocity models, for
the simple reason that most commercial robots do not execute velocity commands
with the level of accuracy that can be obtained by measuring the revolution of
the robot’s wheels. However, odometry is only available after executing a motion
command. Thus, odometry models are usually applied for estimation, whereas
velocity models are used for probabilistic motion planning, which is outside the
scope of this thesis.

5.3 Velocity Motion Model

The velocity motion model assumes that we can control a robot through two ve-
locities, a rotational and a translational velocity.

We will denote the translational velocity at time t by v, and the rotational
velocity by ω. Hence, we have the control vector

ut =
(
v
ω

)
(5.4)

We arbitrarily postulate that positive rotational velocities ω induce a coun-
terclockwise rotation 	. Positive translational velocities v correspond to forward
motion.

For kinematic state estimation, it suffices to sample from the motion model
p(xt | xt−1, ut) instead of computing the posterior for arbitrary xt, ut and xt−1.
Sampling from a conditional density is different than calculating the density. In
sampling, one is given ut and xt−1 and seeks to generate a random xt drawn
according to the motion model p(xt | xt−1, ut). When calculating the density, one
is also given xt generated through other means, and one seeks to compute the
probability of xt under p(xt | xt−1, ut).

The Algorithm 8 generates random samples from p(xt | xt−1, ut) for a fixed
control ut and pose xt−1. It accepts xt−1 = (x y θ)T and ut = (v ω)T as
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Algorithm 8 Velocity Motion Model

Require: Pose xt−1 = (x y θ)T and control ut = (v ω)T .
Motion noise parameters α1, . . . , α6 and function sample(σ2) that generates a
random sample from a zero-centered distribution with variance σ2.

Ensure: Sample pose xt = (x′ y′ θ′)T from p(xt | ut, xt−1) applying a pure velocity
model without odometry information.
Final orientation is perturbed by an additional random term γ̂.

Algorithm: VelocityMotionModel(ut, xt−1) return xt
1: v̂ = v + sample(α1v

2 + α2ω
2)

2: ω̂ = ω + sample(α3v
2 + α4ω

2)
3: γ̂ = sample(α5v

2 + α6ω
2)

4: x′ = x+
v̂

ω̂

(
sin (θ + ω̂∆t)− sin θ

)
5: y′ = y +

v̂

ω̂

(
cos θ − cos (θ + ω̂∆t)

)
6: θ′ = θ + ω̂∆t+ γ̂∆t

7: return xt = (x′, y′, θ′)T

input and generates a random pose xt = (x′ y′ ω′)T according to the distribution
p(xt | xt−1, ut). Line 1 through 3 “perturb” the commanded control parameters
by noise drawn from the error parameters of the kinematic motion model. The
noise values are then used to generate the sample’s new pose in lines 4 through 7.
Thus, the samping procedure implements a simple physical robot motion model that
incorporates control noise in its prediction, in just about the most straightforward
way.

A null rotational velocity ω̂ = 0 produces a division-by-zero indetermination
when computing x′ and y′ at lines 4 and 5. In this case it is safe to take the limit
when ω̂ → 0 for the problematic expressions

lim
ω̂→0

v̂

ω̂

(
sin (θ + ω̂t)− sin θ

)
l’Hôpital

= tv̂ cos θ (5.5)

lim
ω̂→0

v̂

ω̂

(
cos θ − cos (θ + ω̂t)

)
l’Hôpital

= tv̂ sin θ (5.6)

5.3.1 Mathematical Derivation

We will now derive the Algorithm 8. As usual, the reader not interested in the
mathematical details is invited to skip this section at first reading. The derivation
begins with a generative model of robot motion, and then derives formulae for
sampling p(xt | xt−1, ut) for arbitrary xt, ut and xt−1.

Exact Motion

Before turning to the probabilistic case, let us begin by stating the kinemtics for
an ideal, noise-free robot. Let ut = (v ω)T denote the control at time t. If both
velocities are kept at a fixed value for the entire time interval (t − 1, t], the robot
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moves on a circle with radius

r =
∣∣∣ v
ω

∣∣∣ (5.7)

This follows from the general relationship between the translational and rota-
tional velocities v and ω for an arbitrary object moving on a circular trajectory with
radius r,

v = ω · r (5.8)

Equation (5.7) encompasses the case where the robot does no turn at all (ω =
0), in which case the robot moves on a straight line. A straight line corresponds to
a circle with infinite radius, hence we note thar r may be infinite.

(xc, yc)

y

x

(x, y)

θ

r

θ − π
2

Figure 5.2: Exact Motion

Let xt−1 = (x y θ)T be the initial pose of the robot, and suppose we keep the
velocity constant at (v ω)T for some time ∆t. As one easily shows, the center of
the circle is at

xc = x− v

ω
sin θ (5.9)

yc = y − v

ω
cos θ (5.10)

The variables (xc yc)T denote this coordinate. After ∆t time of motion, our
ideal robot depicted in Figure 5.2 will be at xt = (x′ y′ θ′)T with

x′y′
θ′

 =


xc +

v

ω
sin(θ + ω∆t)

yc −
v

ω
cos(θ + ω∆t)

θ + ω∆t

 (5.11)

=

xy
θ

+


− v
ω

sin θ +
v

ω
sin(θ + ω∆t)

v

ω
cos θ − v

ω
cos(θ + ω∆t)

ω∆t



=

xy
θ

+


v

ω

(
sin(θ + ω∆t)− sin θ

)
v

ω

(
cos θ − cos(θ + ω∆t)

)
ω∆t
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The derivation of this expression follows from simple trigonometry. After ∆t
units of time, the noise-free robot has progressed v ·∆t along the circle, which
caused its heading direction to turn by ω ·∆t. At the same time, its x and y
coordinate is given by the intersection of the circle about (xc yc)T and the ray
starting at (xc yc)T at the angle perpendicular to ω ·∆t. The second transformation
simply substitutes (5.9) and (5.10) into the resulting motion equations.

Of course, real robots cannot jump from onew velocity to another and keep
velocity constant in each time interval. To compute the kinematics with non-
constant velocities, it is therefore common practice to use small values for ∆t and
to approximate the actual velocity by a constant within each time interval. The
approximate final pose is then obtained by concatenating the corresponding cyclic
trajectories using the mathematical equations just stated.

Real Motion

In reality, robot motion is subject to noise. The actual velocities differ from the
commanded ones (or measured ones, if the robot posseses a sensor for measuring
velocity). We will model this difference by a zero-centered random variable with
finite variance. More precisely, let us assume that actual velocities are given by(

v̂
ω̂

)
=
(
v
ω

)
+
(
εα1v2+α2ω2

εα3v2+α4ω2

)
(5.12)

Here εσ2 is a zero-mean error variable with variance σ2. Thus, the true velocity
equals the commanded velocity plus some small, additive error (noise). In our
model, the standard deviation of the error is proportional to the commanded velocity.
The parameters α1 to α4 (with αi ≥ 0 for i = 1, . . . , 4) are robot-specific error
parameters. They model the accuracy of the robot. The less accurate a robot, the
larger these parameters.

Two common choices for the error εσ2 are the normal and the triangular dis-
tribution. The reader interested in the density function and the sampling process
over such distributions is invited to see Appendix A, which treats the details of the
sampling processes beyond random variables drawn from different distributions.

A better model of the actual pose xt = (x′ y′ θ′)T after executing the motion
command ut = (v ω)T at xt−1 = (x y θ)T is thus

x′y′
θ′

 =

xy
θ

+


v̂

ω̂

(
sin(θ + ω̂∆t)− sin θ

)
v̂

ω̂

(
cos θ − cos(θ + ω̂∆t)

)
ω̂∆t

 (5.13)

This equation is obtained by substituting the commanded velocity ut = (v ω)T

with the noisy motion (v̂ ω̂)T in (5.11). However, this model is still not very
realistic, for reasons discussed in turn.

Final Orientation

The two equations given above exactly describe the final location of the robot given

that the robot actually moves on an exact circular trajectory with radius r =
v̂

ω̂
.
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While the radius of this circular segment and the distance traveled is influenced by
the control noise, the very fact that the trajectory is circular is not. The assumption
of circular motion leads to an important degeneracy. In particular, the support of the
density p(xt | xt−1, ut) is two-dimensional, within a three-dimensional embedding
pose space. The fact that all posterior poses are located on a two-dimensional
manifold within the three-dimensional pose space is a direct consequence of the
fact thar we used only two noise variables, one for v and one for ω. Unfortunately,
this degeneracy has important ramifications when applying Bayes filters for state
estimation.

In reality, any meaningful posterior distribution is of course not degenerate, and
poses can be found within a three-dimensional space of variations in x, y and θ. To
generalize our motion model accordingly, we will assume that the robot performs a
rotation γ̂ when it arrives at its final pose. Thus, instead of computing θ′ according
to (5.13), we model the final orientation by

θ′ = θ + ω̂∆t+ γ̂∆t (5.14)

with

γ̂ = εα5v2+α6ω2 (5.15)

Here α5 and α6 are additional robot-specific parameters that determine the
variance of the additional rotational noise. Thus, the resulting motion model is as
follows, x′y′

θ′

 =

xy
θ

+


v̂

ω̂

(
sin(θ + ω̂∆t)− sin θ

)
v̂

ω̂

(
cos θ − cos(θ + ω̂∆t)

)
ω̂∆t+ γ̂∆t

 (5.16)

5.4 Odometry Motion Model

The velocity model discussed thus far uses the robot’s velocity to compute posteriors
over poses. Alternatively, one might want to use the odometry measurements as the
basis for calculating the robot’s motion over time. Odometry is commonly obtained
by integrating wheel encoder information. This lead to a second motion model, the
odometry motion model, which uses odometry measurements in lieu of controls.

Practical experience suggests that odometry, while still erroneous, is usually more
accurate than velocity. Both suffer from drift and slippage, but velocity additionally
suffers from the mismatch between the actual motion controllers and its crude
mathematical model.

Technically, odometric information are sensor measurements, not controls. To
model odometry as measurements, the resulting Bayes filter would have to include
the actual velocity as state variables —which increases the dimension of the state
space. To keep the state space small, it is therefore common to consider odometry
data as if it were control signals. In this section, we will treat odometry measure-
ments just like controls. The resulting model is at the core of many of today’s best
probabilistic robot systems.

Let us define the format of our control information. At time t, the correct
pose of the robot is modeled by the random variable xt. The robot odometry
estimates this pose; however, due to drift and slippage there is no fixed coordinate
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transformation between the coordinates used by the robot’s internal odometry and
the physical world coordinates. In fact, knowing this transformation would solve the
robot localization problem.

The odometry model uses the relative motion information, as measured by the
robot’s internal odometry. More specifically, in the time interval (t−1, t], the robot
advances from a pose xt−1 to pose xt. The odometry reports back to us a related
advance from x̄t−1 = (x̄ ȳ θ̄)T to x̄t = (x̄′ ȳ′ θ̄′)T . Here the bar indicates that
these are odometry measurements embedded in a robot internal coordinate whose
relation to the global world coordinates is unknown. The key insight for utilizing
this information in state estimation is that the relative difference between x̄t−1 and
x̄t, under and appropiate definition of the term “difference”, is a good estimator for
the difference of the true poses x̄t−1 and x̄t. The motion information ut is, thus,
given by the pair

ut =
(
x̄t−1

x̄t

)
(5.17)

Ë δtrans

Ê δrot1

Ì δrot2

Figure 5.3: Odometry Model

To extract relative odometry, ut is transformed into a sequence of three steps:
Ê a rotation, followed by Ë a straight line motion (translation), and Ì another
rotation. Figure 5.3 illustrates this decomposition: Ê the initial turn is called δrot1,
Ë the translation δtrans, and Ì the second rotation δrot2. Each pair of positions
(s̄ s̄′)T has a unique parameter vector (δrot1 δtrans δrot2)T , and these parameters
are sufficient to reconstruct the relative motion between s̄ and s̄′. Thus, δrot1,
δtrans, δrot2 form together a sufficient statistics of the relative motion encoded by
the odometry.

The probabilistic motion model assumes that these three parameters are cor-
rupted by independent noise. The reader may note that odometry motion uses one
more parameter than the velocity vector defined in the previous section, for which
reason we will not face the same degeneracy that led to the definition of a “final
rotation”.

The kinematic state estimation requires samples of p(xt | xt−1, ut) rather than
a closed-form expression for computing p(xt | xt−1, ut) for any xt−1, ut and xt.
The Algorithm 9 accepts an initial pose xt−1 and an odometry reading ut as input,
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Algorithm 9 Odometry Motion Model

Require: Pose xt−1 = (x y θ)T and control ut = (x̄t−1 x̄t)
T with x̄t−1 =

(
x̄ ȳ θ̄

)T
and x̄t =

(
x̄′ ȳ′ θ̄′

)T
, that is a differentiable set of two pose estimates obtained

by the robot’s odometer.
Motion noise parameters α1, . . . , α4 and function sample(σ2) that generates a
random sample from a zero-centered distribution with variance σ2.

Ensure: Sample pose xt = (x′ y′ θ′)T from p(xt | ut, xt−1) using odometry infor-
mation.

Algorithm: OdometryMotionModel(ut, xt−1) return xt
1: δrot1 = atan2 (ȳ′ − ȳ, x̄′ − x̄) + θ̄

2: δtrans =
√

(x̄− x̄′)2 + (ȳ − ȳ′)2

3: δrot2 = θ̄′ − θ̄ − δrot1

4: δ̂rot1 = δrot1 − sample(α1δ
2
rot1 + α2δ

2
trans)

5: δ̂trans = δtrans − sample(α3δ
2
trans + α4δ

2
rot1 + α4δ

2
rot2)

6: δ̂rot2 = δrot2 − sample(α1δ
2
rot2 + α2δ

2
trans)

7: x′ = x+ δ̂trans cos
(
θ + δ̂rot1

)
8: y′ = y + δ̂trans sin

(
θ + δ̂rot1

)
9: θ′ = θ + δ̂rot1 + δ̂rot2

10: return xt = (x′, y′, θ′)T

and outputs a random xt distributed according to p(xt | xt−1, ut). It randomly
guesses a pose xt−1 in lines 4-6, instead of computing the probability of a given xt.

5.4.1 Mathematical Derivation

The derivation of the algorithm is relatively straightforward, and may be skipped at
first reading. To derive a probabilistic motion model using odometry, we recall that
the relative difference between any two poses is represented by a concatenation of
three basic motions: a rotation, a translation and another rotation. The following
equations show how to calculate the values of the two rotations and the translation
from the odometry reading ut = (x̄t−1 x̄t)T with x̄t−1 = (x̄ ȳ θ̄) and x̄t =
(x̄′ ȳ′ θ̄′),

δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄) + θ̄ (5.18)

δtrans =
√

(x̄− x̄′)2 + (ȳ − ȳ′)2 (5.19)

δrot2 = θ̄′ − θ̄ − δrot1 (5.20)

To model the motion error we assume that the “true” values of the rotation and
translation are obtained from the measured ones by substracting independent noise
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εσ2 with zero mean and variance σ2,

δ̂rot1 = δrot1 − εα1δ2rot1+α2δ2trans
(5.21)

δ̂trans = δtrans − εα3δ2trans+α4δ2rot1+α4δ2rot2
(5.22)

δ̂rot2 = δrot2 − εα1δ2rot2+α2δ2trans
(5.23)

The parameters α1 to α4 are robot-specific error parameters, which specify the
error accrued with motion.

Consequently, the true position xt is obtained from xt−1 by an initial rotation
with angle δ̂rot1, followed by a translation with distance δ̂trans, followed by another
rotation with angle δ̂rot2. Thus,x′y′

θ′

 =

xy
θ

+

δ̂trans cos(θ + δ̂rot1)
δ̂trans sin(θ + δ̂rot1)

δ̂rot1 + δ̂rot2

 (5.24)

Notice that Algorithm 9 implements (5.18) through (5.24).

5.5 Discussion

The odometry motion model is generally preferable to the velocity motion model.
Nevertheless, both models perfom well with noisy motion, allowing SLAM algo-
rithms to estimate the robot pose with sufficient precision. The odometry model
gives better results because the odometric information retreived from the wheel en-
coders used to be more precise than the control commanded. Indeed, for rotational
movements the odometry reduces error propagation with repect to the real robot
pose.

Motion
Models

Kinematics

Velocity
Motion
Model

Odometry
Motion
Model

Dynamics

Figure 5.4: Motion Models

Alternatively, it is possible to use more sophisticated motion models that might
cover the robot dynamics. Recall that the velocity and odometry motion models
discussed thus far based on the robot kinamtics only, as shown in Figure 5.4. In
any case, they are outside the scope of the present work. The reader interested
might consult the works commented in the literature. Similarly, it is also invited to
consult other works concerning robots that do not operate in a plane and have a
kinematic configuration different than the one discussed in this chapter.



Chapter 6

Robot Perception

6.1 Introduction

The Environment measurement models comprise the second domain-specific model environment
measurement modelsin probabilistic robotics, next to motion models. Measurements models describe

the formation process by which sensor measurements are generated in the physical
world. Today’s robots use a variety of different sensor modalities, such as range
sensors or cameras. The specifics of the model depends on the sensor. Hereafter
we discuss the fundamentals of robot perception as described in [149]. In this
work we focus in feature-based models, whose description is very detailed. Other
measurement models are later skimmed to give a view of the variety of alternatives.

Probabilistic robotics explicitly models the noise in sensor measurements. Such
models accounts for the inherent uncertainty in the robot’s sensors. Formally, the
measurement model is defined as a conditional probability distribution p(zt | xt,m),
where xt is the robot pose, zt is the measurement at time t and m is the map of the
environment. Although we mainly address range-sensors throughout this chapter,
the underlying principles and equations are not limited to this type of sensors.
Instead the basic principle can be applied to any kind of sensor.

Figure 6.1 shows a typical laser range scan, acquired with a 2-D laser range laser range scan

finder. A laser actively emits a signal and records its echo. The signal is a light beam,
which make lasers provide much more focused beams than other range sensors, like
a sonar . The specific laser in Figure 6.1 is based on a time-of-flight measurement, sonar

and these are spaced in dθ increments.

As a rule of thumb, the more accurate a sensor model, the better the results
—though there are some important caveats that were already discussed in Sec-
tion 2.4.1. In practice, however, it is often impossible to model a sensor accurately,
primarily due to the complexity of physical phenomena.

Often, the response characteristics of a sensor depends on variables we prefer
not to make explicit in a probabilistic robotics algorithm —such as the surface ma-
terial of walls. Probabilistic robotics accommodates inaccuracies of sensor models
in the stochastic aspects. By modeling the measurement process as a conditional
probability density p(zt | xt) instead of a deterministic function zt = f(xt), the un-
certainty in the sensor model can be accommodated in the non-deterministic aspects
of the model. Herein lies a key advantage of probabilistic techniques over classical
robotics: in practice, we can get away with extremely crude models. However, when
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Figure 6.1: Laser range scan

devising a probabilistic model, care has to be taken to capture the different types
of uncertainties that may affect a sensor measurement.

Many sensors generate more than one numerical measurement value when
queried. For example, camaeras generate entire arrays of values; similarly, range
finders usually generate entire scans of ranges. We will denote the number of such
measurement values within a measurement zt by K, hence we can write

zt =
{
z1
t , z

2
t , . . . , z

K
t

}
(6.1)

We will use zkt to refer to an individual measurement —e.g. one range value.
The probability p(zt | xt,m) is obtained as the product of the individual mea-

surement likelihoods

p(zt | xt,m) =
K∏
k=1

p(zkt | xt,m) (6.2)

Technically, this amounts to an independence assumption between the noise
in each individual measurement beam —just as our Markov assumption assumes
independent noise over time (see Section 2.4.1). This assumption is only true in
the ideal case, since possible causes of dependencies are errors in the model m,
approximations in the posterior and so on. For now, we will simply not worry about
violations of the independence assumption.

6.2 Maps

To express the process of generating measurements, we need to specify the envi-
ronment in which a measurement is generated. A map of the environment is a listmap

of objects in the environment and their locations. Formally, a map m is a list of
objects in the environment along with their properties

m =
{
m1,m2, . . . ,mN

}
(6.3)
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Here N is the total number of objects in the environment, and each mi with
1 ≤ i ≤ N specifiees a property. Maps are usually indexed in one of two ways, known
as feature-based and location-based. In feature-based maps, i is a feature index.
The value of mi contains the properties of a feature and its Cartesian location. In
location-based maps, the index i corresponds to a specific location. In planar maps,
it is common to denote a map element by mx,y instead of mi, to make explicit that
mx,y is the property of a specific world coordinate (x y).

Both types of maps have advantages and disadvantages. Location-based maps
are volumetric , in that they offer a label for any location in the world. Volumetric volumetric

maps contain information not only about objects in the environment, but also about
the absence of objects —e.g. free-space. This is quite differente in feature-based
maps, since they only specify the shape of the environment at the specific locations,
namely the locations of the objects contained in the map. Feature representation
makes it easier to adjust the position of an object —e.g. as a result of additional
sensing. For this reason, feature-based maps are popular in the robotic mapping
field, where maps are constructed from sensor data.

A classical map representation is known as occupancy grid map, which is occupancy grid map

location-based. They assign to each (x y) coordinate a binary occupancy value
that specifies whether or not a location is occupied with an object. Occupancy grid
maps are great for mobile robot navigation, since they make it easy to find paths
through the unoccupied space.

Throughout this dissertation, we will drop the distinction between the physical
world and the map. Technically, sensor measurements are caused by physical objects,
not the map of those objects. However, it is tradition to condition sensor models on
the map m. Hence we will adopt a notation that suggests measurements depend
on the map.

6.3 Feature-Based Measurement Models

6.3.1 Feature Extraction

If we denote the feature extractor as a function f , the features extracted from a features

range measurement are given by f(zt). Most feature extractors extract a small
number of features from high-dimensional sensor measurements. A key advantage
of this approach is the enormous reduction of computational complexity. Therefore,
inference in the low-dimensional feature space can be orders of magnitude more
efficient than in the high-dimensional measurement space.

For range sensors, it is common to identify lines, corners or local minima in
range scans, which correspond to walls, corners or objects such as tree trunks.
When cameras are used for navigation, the processing of camera images falls into
the realm of Computer Vision. Computer Vision has devised a myriad of feature
extraction techniques from camera images. Popular features include edges, corners,
distinct patterns and objects of distinct appearance. In robotics, it is also common
to define places as features, such as hallways and intersections. The Chapter 7 that
follows discusses some feature extraction algorithms and the features that will form
the feature-based maps that the SLAM algorithms of the present work manage.
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6.3.2 Landmark Measurements

Features correspond to distinct objects in the physical world. For example, in in-
door environments features may be door posts or windowsills; outdoors they may
correspond to tree trunks or corners of buildings. In Robotics, it is common to call
those physical objects landmarks, to indicate that they are being used for robotlandmarks

navigation.
The most common model for processing landmarks assumes that the sensor can

measure the range and the bearing of the landmark relative to the robot’s local
coordinate frame. Such sensors are called range and bearing sensors. The existencerange and bearing

sensors of a range-bearing sensor is not an implausible assumption, since any local feature
extracted from range scans come with range and bearing information, as do visual
features detected by stereo vision. In addition, the feature extractor may generate
a signature. We assume a signature is a numerical value that may equally be ansignature

integer that characterizes the type of the observed landmark, or a multidimensional
vector characterizing a landmark —e.g. line equation parameters.

If we denote the range by r, the bearing by φ, and the signature by s, the feature
vector is given by a collection of triplets

f(zt) =
{
f1
t , f

2
t , . . .

}
=

{r1
t

φ1
t

s1
t

 ,

r2
t

φ2
t

s2
t

 , . . .

}
(6.4)

The number of features identified at each time step is variable. However, many
probabilistic robotic algorithms assume conditional independence between features

p(f(zt) | xt,m) =
∏
i

p(rit, φ
i
t, s

i
t | xt,m) (6.5)

Conditional independence applies if the noise in each individual measurement
(rit φ

i
t s

i
t)
T is independent of the noise in other measurements (rjt φ

j
t s

j
t )T for i 6= j.

Under the conditional independence assumption, we can process one feature at a
time, which makes it much easier to develop algorithms that implement probabilistic
measurement models.

6.3.3 Sensor Model with Known Correspondence

The measurement model requires a mechanism that establishes the correspondence
between a feature f it and a landmark mj in the map. The variable cit will designate
the identity of f it uniquely. Therefore, j = cit denotes that f it corresponds to the
landmark mj . Given that the correspondence between features and landmarks is
unknown initially, a method to build the array of correspondences ct must be devel-
oped. Such problem is known as data association and it is discussed in Chapter 8.data association

Here, we will consider that ct have been computed in advance and we can procede
to work with the sensor model, its Jacobian or the inverse model given below.

Let us now devise a sensor model for features. In Section 6.2 we distinguished
between two types of maps: feature-based and location-based. Landmark measure-
ment models are usually defined only for feature-based maps. The reader may recall
that those maps consist of lists of features m = {m1,m2, . . .}. Each feature may
possess a signature and a location coordinate. The location of a feature, denoted
(mj,x mj,y)T , is simply its coordinate in the global coordinate frame of the map.
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The measurement model is different depending on the type of feature used. We
consider just two types of features: points and lines. The Jacobian of the measure-
ment model is used by recursive state estimators as the Kalman Filter described in
Chapter 3. The Jacobian can be derived with respect to the landmark mj or the
pose xt, and both might be used by FastSLAM algorithms. The inverse model al-
lows to add new landmarks to the map, since it tranforms the feature’s coordinates
into the global coordinate frame of the map. The signature sit is omitted in the
following models because it is irrelevant actually.

Sensor Model for Point Features

The measurement vector for a noise-free landmark sensor is easily specified by the
standard geometric laws. We will model noise in landmark perception by indepen-
dent Gaussian noise on the range and bearing. The resulting measurement model
is formulated for the case where the i-th feature at time t corresponds to the j-th
landmark in the map. As usual, the robot pose is given by xt = (x y θ)T .(

rit
φit

)
=
( √

(mj,x − x)2 + (mj,y − y)2

atan2 (mj,y − y,mj,x − x)− θ

)
+
(
εσ2
r

εσ2
φ

)
(6.6)

where εσ2
r

and εσ2
φ

are zero-mean Gaussian error variables with standard deviations

σr and σφ.
The Jacobian with respect to the landmark mj is

Hm,j =


mj,x − x√

qt

mj,y − y√
qt

y −mj,y

qt

mj,x − x
qt

 (6.7)

where qt = (mj,x − x)2 + (mj,y − y)2.
Analogously, the Jacobian with respect to the pose xt is

Hx,j =


x−mj,x√

qt

y −mj,y√
qt

mj,y − y
qt

x−mj,x

qt

 (6.8)

Curiously, for point features the Jacobian with respect to the landmark Hm,j

may be computed from the Jacobian with respect to the pose Hx,j as follows

Hx,j = −Hm,j (6.9)

and vice versa.
The inverse measurement model is defined for the cartesian coordinates xit and

yit computed from the parameters rit and φit of a feature in polar form as in (6.6).
Hence (

mj,x

mj,y

)
=
(
xit cos θ − yit sin θ + x
xit sin θ − yit cos θ + y

)
(6.10)

Sensor Model for Line Features

If we consider a line feature the measurement model changes [32]. Therefore, for
the Hessian model

ρ = x cos θ + y sin θ (6.11)
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of a line feature defined by the parameters ρit and θit, the measurement model turns
into (

ρit
θit

)
=
(
mj,ρ

mj,θ

)
−
(
x cosmj,θ + y sinmj,θ

θ

)
+
(
εσ2
ρ

εσ2
θ

)
(6.12)

The Jacobian with respect to the landmark mj is

Hm,j =
(

1 x sinmj,θ − y cosmj,θ

0 1

)
(6.13)

and with respect to the pose xt yields

Hx,j =
(
− cosmj,θ − sinmj,θ

0 0

)
(6.14)

Finally, the inverse measurement model is(
mj,ρ

mj,θ

)
=
(
ρit
θit

)
+
(
x cos(θit − θ) + y sin(θit − θ)

θ

)
(6.15)

6.4 Other Measurement Models

In [149] some alternative measurement models are discussed in detail. Here we
describe such models in brief with special attention to the advantages and drawbacks
of each. The reader interested in these measurement models is invited to consult
[149] and other references given below, for further reading.

6.4.1 Beam Models

The beam model is an approximation of the physical model of range finders. Rangebeam model

finders measure the range to nearby objects. Range may be measure along a beam,
which is a good model of the workings of laser range finders [149]. The model
incorporates four types of measurement erros: small measurement noise, unexpected
objects, failures to detect objects and random unexplained noise. The desired model
p(zt | xt,m) is therefore a mixture of four densities, each of which corresponds to
a particular type of error. The algorithm applies ray casting to compute the noise-
free range for a particular measurement and the likelihood of each individual range
measurement zkt , which implements the mixing rule for densities [23, 97].

The various parameters of the beam sensor model are named intrinsic param-
eters Σ and an algorithm for adjusting these model parameters must be applied.
Such algorithm that maximizes the likelihood of the data is known as a Maximummaximum likelihood

Likelihood (ML) estimator [149].
The beam-based sensor model, while closely linked to the geometry and physics

of range finders, suffers two major drawbacks [149]. The model exhibits a lack of
smoothness, particularly in cluttered environments with many small obstacles. As a
consequence, any approximate belief might miss the correct state and methods for
finding the most likely state are prone to local minima. Additionally, the model is
computational involved, since evaluating p(zt | xt,m) for each single sensor mea-
surement zkt involves ray casting, which is computationally expensive. Fortunately,
this problem can be partially remedied by pre-caching the ranges over a discrete
grid in pose space [55].
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6.4.2 Likelihood Fields

An alternative method called likelihood field overcomes some of the beam model likelihood field

limitations [12, 146]. It is an ad hoc algorithm that does not necessarily com-
pute a conditional probability relative to any meaningful generative model of the
physics of the sensors. However, the resulting posteriors are much smoother and
the computation is more efficient.

The algorithm projects the end points of a sensor scan zt into the global co-
ordinate space of the map. The projection coordinates are only meaningful when
the sensor detects an obstacle. If the range sensor takes on its maximum value
zkt = zmax, this measurement model simply discards such max-range readings.
Three types of sources of noise and uncertainty are assumed: measurement noise,
failures and unexplained random measurements. Just as for the beam-based sensor
model, the probability p(zt | xt,m) integrates all three distributions of noise.

A key advantage of the likelihood field model over the beam model is smoothness
and that the precomputation takes place in 2D, instead of 3D, increasing the com-
pactness of the pre-computed information. However, it has three disadvantages: it
does not explicitly model dynamics that might cause short readings, it treats sensors
as if they can see through walls and it does not take map uncertainty into account
—it cannot handle unexplored areas. It is possible to extend the basic algorithm to
diminish the effect of these limitations [77]. For instance, map occupancy values
might be sorted into three categories: occupied, free and unknown.

6.4.3 Correlation-based Measurement Models

In the literature there exist a number of sensor models that measure correlations
between a measurement and the map [44, 123, 152]. A common method known
as map matching transforms scans into occupancy maps [160]. It compiles small map matching

numbers of consecutive scans into local maps mlocal. The measurement model
compares mlocal to the global map m using a map correlation function, such that
the more similar m and mlocal, the larger p(mlocal | xt,m). It represents the
probability of observe the local map mlocal conditioned on the robot pose xt and
the map m, i.e. the probability that mlocal have been observed from xt withing the
map m.

Map matching is easy to compute and it explicitly considers the free-space in the
scoring of two maps, contrary to the likelihood field method that only considers the
end point of the scans, which correspond to occupied space. On the other hand, map
matching does not possess a plausible physical explanation, since correlations are the
normalized quadratic distance between maps, which is not the noise characteristic
of range sensors [149].

6.5 Discussion

The measurement models discussed thus far are illustrated in the mindmap of Fig-
ure 6.2. These models might be improved to represent accurately the physics of the
measurement sensor or reduce the computational cost of the algorithm. There is a
number of works of interst in the literature for each of them, as the reader might
see in Section 6.6.
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Figure 6.2: Measurement Models

In the present work we only use the feature-based measurement model devised
for both point and line features in Section 6.3.3 because we will employ a featured-
based SLAM algorithm fed by feature extraction methods. Therefore, the measure-
ment models, their Jacobians and inverse models are at the core of the estimation
techniques of the SLAM method. Furthermore, feature extraction methods simplify
and modularize the problem, giving a computationally efficient solution that suits
with the real time requirements demanded. The subsequent chapter is concerned
with such methods.

6.6 Bibliographical and Historical Remarks

The contents of this chapter is essentially taken from [149], whose models are extremely
crude relative to the models of laser range finders described in other works [116, 163],
according to theyself. Nevertheless, those models are outside the scope of this thesis,
that discusses feature-based measurement models in detail and describes other alternative
models briefly, since they will not be employed in the present work. The feature-based
model presented here includes the Jacobians and inverse models for both point and line
feature, using the model proposed by Crowley in [32] for the former. Such models are
commonplace in the SLAM literature, mostly for point landmarks [80].

An early work on beam models for range sensors can be found in a work of Moravec

[97]. Fox et al. described in [55] a beam-based model with pre-caching of range measure-

ment like the one summarized here. The likelihood fields were first published by Thrun

[146] notwithstanding that they are related to the rich literature on scan matching [12].

Schiele and Crowley present a comparison of different models including correlation-based

approaches [123]. The robustness of the map matching variant is analyzed by Yamauchi

and Langley in [160], while Ducket and Nehmzow transform local occupancy grids into

histograms that can be matched more efficiently [44].



Chapter 7

Feature Extraction

7.1 Introduction

In both localization and mapping, the measurement data or observations must be
put in correspondence with the information stored in the map of the environment, a
process known as data association. There are two techniques commonly employed to data association

achieve this matching process: point and line based. The data association based on
points works directly in the space of sensor raw data —e.g. laser scan points, image
pixels. The data association based on landmarks or key features, which are obtained features

or extracted through the transformation of raw data into geometric features. The
extracted features are used to solve the data association problem. This alternative is
more compact, it demands lower storage and computational resources, and provides
rich and precise information [4, 17, 30, 102, 113, 122, 127].

Feature
Line

SegmentInfinite

Point

KeypointCorner

Figure 7.1: Common landmarks for feature-based SLAM

There exists many types of geometric primitives that might be used as features
for mapping. The infinite line is meant to be the most simple one [102]. It is infinite line

possible to describe a large number of interior environments using infinite lines only.
Furthermore, corner detection from the extracted lines is straightforward and enrich corner

the environment representation at a low computational cost.
Figure 7.1 shows those and other common features used in robotic mapping.

Corners are just a kind of point feature that relies on the lines extracted, but there
are algorithms that extract keypoints directly. That is the case of feature detectors keypoints

as Harris [67], SIFT [82] and SURF [11], which provide a set of keypoints from an
image —typically a frame retrieved by a camera onboard. It is also possible to work

57
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with more complex geometric primitives, like line segments [26, 27, 90] or evensegments

curves such as circles and ellipses [57]. The data association problem is slightly
more difficult with such features, but the resulting map is more representative of
the environment and might be more accurate.

The ideal feature does not only depend on the data association, the extraction
process must be taken into account too. The feature extraction process is tightly
related with the raw data representation provided by the measurement sensor. A
camera and a range laser are different by far and even more, all cameras and lasers
does not provide the same format or volume of data. The present work is focused
in range lasers exclusively. More precisely, we will manage a frontal laser of 180◦range lasers

side of view, as shown in Figure 7.2. The following feature extraction algorithms
make the most of this kind of data, although the same strategies might be applied
to data sampled from other sensors. Indeed, many of the algorithms shown here
has been usually taken and adapted from those of the Computer Vision literature
—e.g. Split & Merge [102, 109].

7.2 Line Extraction

There are many algorithms to extract lines from range laser scans. Most common
line extractors are compared in [102, 122, 127]. All of them are conceptuallyline extractors

simple, easy to implement and are suitable to manage range laser scan data, which
is particularly dense and precise. Finally, corners may be detected with a test of real
intersections applied to all possible pairs of lines extracted. Such a corner extraction
algorithm relies on a line extractor and it is analyzed in Section 7.4.

laser

beam

r

scan

dθ

pi

scan point

Figure 7.2: Scan points

A range laser scan can be seen as a set of n points P = 〈p1, . . . , pn〉. Scan points
are typically in polar form p = (ρ θ)T with range ρ and bearing θ, but they are easily
transformed into cartesian form p = (x y)T knowing the laser specifications and
the acquisition configuration. The laser configuration usually depends on just two
parameters, the range r and the resolution dθ, as shown in Figure 7.2. The reader
might recall this laser scan representation from Chapter 6, as it is also the basis of
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the measurement model. For simplicity, we will manage both point representations
indistinctly depending on the line extractor algorithm, because they are thought to
work with a particular representation.

The line extraction problem can be subdivided into two subproblems. A segmen-
tation problem that detects and separates the different lines observed —it establishes
which points contribute to each line. And a fitting problem that adjust the parame-
ters of a line model to obtain the best fit —it establishes how the points contribute
to each line. This subproblems are discussed separately in the following sections.

Line extraction algorithms receive a list of scan points P and output a list of
lines L, that might be empty. Depending on the algorithm, it is possible to setup
some specific parameters. In some cases, a goodness factor can be obtained to
measure the quality or certainty of the lines extracted. However, for clarity reasons
this factor will not be shown in the following algorithms.

The line representation is a key aspect, such as the linear fitting method used
to estimate the line parameters from the set of points that presumably form it.
It is crucial to use a consistent representation, one such there is no singularity or
impediment to represent a particular case. A common line representation is the
Hessian model [3] or polar form ρ = x cos θ + y sin θ because it is consistent and hessian model

compact, since only two parameters (ρ θ)T are required. Furthermore, it simplifies
most geometric computations —e.g. line-line intersection, point-line distance—,
allowing an efficient implementation. Other line representations, like the Intercept- intercept-slope model

Slope model or cartesian form y = mx+ b, cannot represent properly vertical lines
because they suffer of a singularity —i.e. m→∞ and b does not even exists.

Thus, the polar form has been adopted to both represent lines and compute the
linear fitting parameters directly. Hence, there is no singularity or loss of precision
when fitting a set of points to a line. The reader may want to consult the details of
line geometry discussed in Appendix C, while Section 7.3 is concerned with linear
fitting, since it is a key element of the line extraction process.
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Figure 7.3: Line Extraction Algorithms

The Figure 7.3 shows the most commonly used line extraction algorithms for
range lasers. This list covers classic to modern methods, that are widely used with
such sensors. Although the goal and input data are shared by all theses algorithms,
their operation and parametrization vary significantly, as shown in the following
sections with a brief description of some of them. For more detailed information,
the reader is referred to some comparative articles written by A. Siadat [127], W.
Burgard [122] and R. Siegwart [102].
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7.2.1 Line Tracking

One of the first line extraction algorithms for range laser scans was coined Lineline tracking

Tracking (LT) because it tries to track the line that best fit the subset of points
from the initial p1 to the current point pi−1 [127]; it is also known as Incrementalincremental

algorithm [53, 140, 156]. It does not need all scan points at first, since it fits a
running line with the leading points p1, . . . , pi−1 of the scan. If the next point pi is
lower than a threshold dmax, pi is added to the line, otherwise a new line is began.
Once a new point is added, the line parameters are fit again. Figure 7.4 illustrates
this process, showing how a new scan point is added to the running line or a new
line is started, for pi = p5.
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Figure 7.4: Line Tracking

The most costly step of the Line Tracking algorithm is the linear regression or
fitting process, which is commonly O (n), where n is the number of points to fit.
As the linear fitting is applied for all scan points, the total algorithm computational
cost is O

(
n2
)

in the worst case. Fortunately, on average n is small because it drops
to 2 when a new line is started. Logically, the running line must contain at least
n = 2 points, as done in Algorithm 10, although a greater value might result in
better performance and accuracy.

Having the running line l parameters that better fit a subset of points, the
distance d of the next point pi to l is computed in line 3. If d is greater than a
threshold dmax, then pi is meant to not belong to l. Hence l is saved and a new
running line is started with pi and pi+1 in line 6. Otherwise, when d is lower than
dmax, pi is added to l, which is fit again considering pi.

As already mentioned, a linear fitting method is at the core of the algorithm.
LT performance is highly conditioned by the linear fitting method used, so a good
method must be chosen. In Section 7.3 some common linear fitting methods are
discussed with the focus on line features that have to be extracted from range laser
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Algorithm 10 Line Tracking

Require: List P = 〈p1, . . . , pn〉 where pi = (xi, yi) are laser scan points and
threshold dmax that represents the maximum distance allowed from a point pi
to the current estimated straight line l.

Ensure: List L = 〈l1, . . . , lm〉 with detected lines li.
Algorithm: LT(P, dmax) return L

1: l = new line with p1, p2 . line through p1 and p2

2: for all pi ∈ P from p3 do
3: d = distance of pi to l
4: if d > dmax then
5: add l to L
6: l = new line with pi, pi+1 . next iteration on pi+2

7: else
8: add pi to l . fit line
9: end if

10: end for
11: return L

scans. Contrary to other line extraction algorithms, that fit the detected lines a pos-
teriori, LT has the fitting process hardcoded. Since the line representation is also
crucial, the linear fitting algorithm must be adapted to work with a particular type
of line parameters. Clearly, all this applies to the rest of line extraction algorithms,
LT is just more sensitive though.

7.2.2 Successive Edge Following

The Succesive Edge Following (SEF) method is one of the fastest and simplest line succesive edge
followingextraction algorithms [127]. It works directly with the polar form (ρ θ)T of the

scan points and it does not compute the linear fitting, which must be done after
the set of lines have been extracted. It shares with LT the ability to extract lines
without knowing the whole set of scan points in advance, but it extracts lines in a
completely different manner.

In SEF, a fast distance d between a pair of consecutive scan points pi−1 and pi
is computed to test if it is higher than a threshold dmax, as shown in Algorithm 11.
If so, the running line l is saved and a new one is started in line 5; otherwise, the
new point pi is added to l. This way, the algorithm only have to remember the
single last scan point pi−1 to compute the distance between it and the next scan
point pi. It is trivial to compute d as shown graphically in Figure 7.5, since scan
points are in polar form (ρ θ)T and the distance d is simply the absolute difference
|ρi−1 − ρi|, hardcoded in line 3.

SEF has a computational cost of O (n) for n scan points, since it only has to
compute the distance between all consecutive pairs of lines, i.e. n−1 times. Recall
that the extracted lines are not fit to the points that form them because this step is
done over the resulting set of lines L output by the algorithm. The major drawback
of this algorithm lies precisely in the fact that it does not computed the running
line. Indeed, it only takes into account the last point contained in the running line.
This makes SEF highly sensitive to outliers and even low measurement noise.
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Figure 7.5: Successive Edge Following

Algorithm 11 Successive Edge Following

Require: List P = 〈p1, . . . , pn〉 where pi = (ρi, θi) are laser scan points in po-
lar form and threshold dmax that represent the maximum absolute difference
allowed between two consecutive points pi−1 and pi.

Ensure: List L = 〈l1, . . . , lm〉 with detected lines li.
Algorithm: SEF(P, dmax) return L

1: l = new line with p1, p2 . line through p1 and p2

2: for all pi ∈ P from p3 do
3: if |ρi−1 − ρi| > dmax then
4: add l to L . fit line
5: l = new line with pi, pi+1 . next iteration on pi+2

6: else
7: add pi to l
8: end if
9: end for

10: return L

7.2.3 Split & Merge

The Split & Merge (SM) method is probably the most popular line extractionsplit & merge

algorithm [102, 122], originally developed in the context of Computer Vision [109].
Given a set of points P from a range laser scan, a line l is fit to the whole set of
points, which makes a big difference with LT and SEF because the complete scan
is demanded. Line l is shown dashed ( ) in Figure 7.6 as the result of the linear
regression. Then the distance from each point pi to l is computed to obtain the
point pm with the higher distance dm. If dm is higher than a threshold dmin, the
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set of points is split at pm and the algorithm is called recursively to both subsets of
points 〈p1, . . . , pm〉 and 〈pm, . . . , pn〉, as shown in the line 6 of Algorithm 12.
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Figure 7.6: Split & Merge

The original algorithm was implemented iteratively [109]. Nevertheless, it can
be implemented recursively, in such a way that it is easier to understand. The basic
recursive algorithm is shown in Algorithm 12 accepting as a parameter the threshold
dmin, which establishes when to split a line. The value of this threshold depends
on the environment and it is affected by the noise of the measurement sensor, since
the algorithm is sensitive to outliers significantly.

Algorithm 12 Split & Merge

Require: List P = 〈p1, . . . , pn〉 where pi = (xi, yi) are laser scan points and
threshold dmin that represents the min distance need from the most remote
point pm to the estimated straight line to split it.

Ensure: List L = 〈l1, . . . , lm〉 with detected lines li.
The extracted lines must pass the collinearity test of the merging step calling
Merge(L, ρmax, θmax) with the final list L.

Algorithm: S&M(P, dmin) return L
1: l = new line with p1, . . . , pn . fit line
2: pm, d = point with max distance d to l
3: if d < dmin then
4: return 〈l〉
5: else
6: return S&M(〈p1, . . . , pm〉, dmin) ∪ S&M(〈pm, . . . , pn〉, dmin) . split
7: end if

The basic Split & Merge algorithm is usually improved adding some additional
threshold parameters, such as the minimum line length lmin and the minimum num-
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ber of points pmin that must form a line. Algorithm 13 accepts these parameters,
which work as base cases for the recursive calls and make the algorithm faster and
more accurate, since outliers get filtered. To some extend, this process is equivalent
to an a priori clustering used to removed outliers and noisy scan points [102].

Algorithm 13 Split & Merge Extended

Require: List P = 〈p1, . . . , pn〉 where pi = (xi, yi) are laser scan points and
threshold dmin that represents the min distance need from the most remote
point pm to the estimated straight line to split it.
Minimum number of points pmin need to extracted a line and minimum line
length lmin allowed.

Ensure: List L = 〈l1, . . . , lm〉 with detected lines li.
The extracted lines must pass the collinearity test of the merging step calling
Merge(L, ρmax, θmax) with the final list L.

Algorithm: S&MExt(P, dmin, pmin, lmin) return L
1: if n < pmin then
2: return ∅ . no line
3: end if
4: l = new line with p1, . . . , pn . fit line
5: pm, d = point with max distance d to l
6: if d < dmin then
7: if ‖p1 − pn‖ < lmin then
8: return ∅ . no line
9: else

10: return 〈l〉
11: end if
12: else
13: return S&MExt(〈p1, . . . , pm〉, dmin, pmin, lmin) ∪

S&MExt(〈pm, . . . , pn〉, dmin, pmin, lmin) . split
14: end if

Once the set of lines L is obtained, the merge step of the algorithm is called. Itmerge

iterates over all possible pairs of lines to analyzed whether they are collinear or not.
The collinearity test is applied to the line parameters, which are the polar coordinatescollinearity

ρ and θ of the line polar form ρ = x cos θ+y sin θ. If the absolute difference between
each line parameter |ρi − ρj | and |θi − θj | is lower than a particular threshold ρmax

and θmax, the lines li and lj are collinear and they are consequently merged into
a single one. The merging step consists on fitting a new line formed by the points
of both li and lj ; their points must be still accesible so. It yields a more compact
representation space that will make the data association process easier.

The computational cost of the merging step is O
(
n2
)

in the worst case, for n

lines detected, since
∑n−1
i=1 n− i = n(n−1)

2 pairs of lines are compared. If a pair of
lines are merged, the number of lines n is reduced by one unit, which provides a
moderate computational cost reduction on avarage. Anyway, this cost is negligible
because it is defined for the low-dimensional feature space representation, where n
tends to be even lower than 10 per range laser scan. Although this step is part of
the SM algorithm, it might be applied to other line extraction methods too. Thus,
algorithms like Line Tracking and Succesive Edge Following may profit from this
merging process.
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Algorithm 14 Merge

Require: List L = 〈l1, . . . , ln〉 where li are lines extracted directly from laser scan
points.
Collinearity thresholds ρmax and θmax that represent the maximum difference
allow for each line parameter; lines are represented in polar form ρ = x cos θ +
y sin θ.

Ensure: List L̂ = 〈l̂1, . . . , l̂m〉 with merged collinear lines l̂i.
Algorithm: Merge(L, ρmax, θmax) return L̂

1: while L not empty do
2: delete l0 from L . take first line of current set of lines L
3: for all li ∈ L do
4: if |ρ0 − ρi| < ρmax∧

|θ0 − θi| < θmax then . modular distance within [0, 2π]
5: l0 = l0 ∪ li . merge lines
6: delete li from L
7: end if
8: end for
9: add l0 to L̂ . fit line if it was merged

10: end while
11: return L̂

Split & Merge is highly customizable:

• The linear fitting algorithm used to compute the line parameters of the line
that best fit a set of scan points. Several choices are discussed in Section 7.3
with methods that provides better accuracy at the same computational cost.

• Minimum number of points pmin that a line must have.

• Minimum length lmin that a line must have.

• Minimum distance dmin that the point p further from the line l that fit the
scan points must have to split l at p.

• The algorithm to merge collinear lines.

• Collinearity conditions ρmax and θmax that establish the maximum difference
between the parameters ρ and θ of two lines —in polar form ρ = x cos θ +
y sin θ— to be considered collinear.

• Furthermore, there exists some improvements that might be applied to the
algorithm. In [3] it is proposed a residual analysis before split. It also advices
to merge non-consecutive segments, which is actually done by Algorithm 14.

One of the major drawbacks of SM is that it must fit the whole set of scan points
for each recursive call. This not only has a high impact on the computational cost
of the algorithm, but also in the robustness. With 180◦ scans, the line that best
fit all scan points usually left the leading and trailing scan points as the furthest.
The split process under this cases tends to produce subsets of very few points, that
are skipped thus. Some lines might be lost with this approach. A more efficient
and robust variant of Split & Merge that only takes the first and last points of the
scan to construct the line l —linear fitting is not needed— is known as Iterative
End-Point Fit, commonly used with 180◦ scans in liu of SM.
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7.2.4 Iterative End-Point Fit

The Iterative End-Point Fit (IEPF) algorithm is a variant of Split & Merge where theiterative end-point fit

only difference is that the line fitting is not applied to the whole set of points, but
only the first and last ones [45, 102, 127]. The reader may compare Figure 7.7 with
7.6 to see the difference between the line constructed by IEPF and SM, respectively.
This makes IEPF faster than SM and still accurate, since the extracted lines are
actually fit with all the points that form then.
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Figure 7.7: Iterative End-Point Fit

Algorithm 15 Iterative End-Point Fit

Require: List P = 〈p1, . . . , pn〉 where pi = (xi, yi) are laser scan points and
threshold dmin that represents the min distance need from the most remote
point pm to the estimated straight line to split it.

Ensure: List L = 〈l1, . . . , lm〉 with detected lines li.
The extracted lines must pass the collinearity test of the merging step calling
Merge(L, ρmax, θmax) with the final list L.

Algorithm: IEPF(P, dmin) return L
1: l = new line with p1, pn . line through p1 and pn
2: pm, d = point with max distance d to l
3: if d < dmin then
4: add p2, . . . , pn−1 to l . fit line
5: return 〈l〉
6: else
7: return IEPF(〈p1, . . . , pm〉, dmin) ∪ IEPF(〈pm, . . . , pn〉, dmin) . split
8: end if

Since IEPF is simply a variant of Split & Merge, the basic algorithm shown in
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Algorithm 15 is fairly the same, with the exception of the line construction in line 1.
Recall that the line is constructed with the first and last points of the scan, so we
get rid of the linear fitting step used in the original SM algorithm. When a line is
detected, the rest of the points within the interval defined by the first and last ones
are added to the line and a linear fitting method is applied. Contrary to SM, this is
only done for extracted lines, which reduce the computational cost significantly.

Even more interesting is the fact that the splitting step performs better when the
line l passes through the first and last scan points. This seems intuitively reasonable
and can be empirically observed for 180◦ range laser scans. However, this is not
suitable for 360◦ range laser scans because there is neither such first nor last scan
points, since the scan is circular.

Algorithm 16 Iterative End-Point Fit Extended

Require: List P = 〈p1, . . . , pn〉 where pi = (xi, yi) are laser scan points and
threshold dmin that represents the min distance need from the most remote
point pm to the estimated straight line to split it.
Minimum number of points pmin need to extracted a line and minimum line
length lmin allowed.

Ensure: List L = 〈l1, . . . , lm〉 with detected lines li.
The extracted lines must pass the collinearity test of the merging step calling
Merge(L, ρmax, θmax) with the final list L.

Algorithm: IEPFExt(P, dmin, pmin, lmin) return L
1: if n < pmin then
2: return ∅ . no line
3: end if
4: l = new line with p1, pn . line through p1 and pn
5: pm, d = point with max distance d to l
6: if d < dmin then
7: if ‖p1 − pn‖ < lmin then
8: return ∅ . no line
9: else

10: add p2, . . . , pn−1 to l . fit line
11: return 〈l〉
12: end if
13: else
14: return IEPFExt(〈p1, . . . , pm〉, dmin, pmin, lmin) ∪

IEPFExt(〈pm, . . . , pn〉, dmin, pmin, lmin) . split
15: end if

Similarly to Split & Merge it is possible to extend the IEPF algorithm with some
threshold parameters that filter noise and outliers. The IEPF extended algorithm is
shown in Algorithm 16, for completeness.

7.2.5 Other Line Extractors

The line extraction algorithms discussed thus far are especially suitable for real time
applications. They have a low computational cost and generates a sufficient robust
set of line features. Nevertheless, there exists many other algorithms, but they
demand higher computational resources. They are usually run offline and some of
them can be very accurate. We present a brief list of such algorithms taken from
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[102], where they are further analyzed and compared, showing the pseudo-code and
specific computational cost.

Line Regression Inspired on the Hough Transform, Line Regression first transformsline regression

the line extraction problem into a search problem in the model space, i.e.
the line parameter domain [4]. Then applies the Agglomerative Hierarchicalagglomerative

hierarchical clustering Clustering (AHC) algorithm to construct adjacent line segments.

RANSAC RANdom SAmple Consensus [50, 161] is an algorithm for robust fittingrandom sample
consensus of models in the presence of outliers. It is a generic segmentation method

that can be used with arbitrary features once we have their model. It is easy
to implement and very popular in Computer Vision to extract features [53].

Hough Transform Although it tends to be most successfully applied to line finding
on intensity images [53], the Hough Transform (HT) has been brought in tohough transform

Robotics for extracting lines from range laser scans images [71, 112].

Expectation Maximization The Expectation Maximization (EM) algorithm is aexpectation
maximization probabilistic method commonly used in missing variable problems [39]. It has

been used as a line extrator in Computer Vision [53] and Robotics [112], where
it is significantly robust.

Other There exists more line extraction methods that are extensions or modifica-
tions of those discussed thus far; for instance, the Window SAmpling Consen-window sampling

consensus with global
evaluation

sus with Global Evaluation (WSAC-GE) [120]. This algorithms begins with an
empty map, and successively proposes a new map by adding or removing lines
from the previous map, according to which map is best evaluated by a global
function. Problems associated with outliers are handled by a probabilistic
search and different segments of the same line are identified easily.

It is common to apply a clustering algorithm prior to the line extraction process.clustering

It helps to removed outliers and spurious scan points that may lead to artifacts or
false possitives [45, 46]. Furthermore, a fast clustering step reduce the measurement
dimensionality and improve the avarage speed of the complete feature extraction
process. Matter of fact, [102] makes use of a simple clustering algorithm for filtering
largely noisy points and coarsely dividing a raw scan into contiguous groups, i.e.
clusters. As a result, clusters having too few points are removed. In [120] they
call Split & Merge Split & Merge (SMSM) to an algorithm that applies a clusteringsplit & merge split &

merge process before SM (actually IEPF variant) to make it more robust in the presence of
outlying data, which is actually the same approach explained thus far. Similarly, [18]
proposes Split & Merge Fuzzy (SMF), that employs a fuzzy clustering approach.split & merge fuzzy

The threshold parameters used by the extended versions of SM and IEPF shown
thus far have an analogous goal. Recall these thresholds do limit the minimum line
length lmin and minimum number of points pmin. With lmin and pmin an equivalent
same filtering process to clustering is achieved, because remote and loose scan
points tend to be ignored.

7.2.6 Discussion

In regard to the line extraction process the most suitable algorithm for real time is
Split & Merge and its variant Iterative End-Point Fit. They are sufficiently fast and
robust to work with range laser scans in real time. Other algorithms are unfeasible
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by far for real time or cannot deal with measurement noise and outliers. The
Line Tracking and Successive Edge Following algorithms discussed thus far perform
poorly under such scenario and require a thorough parametrization tunning.

It has been already mentioned that IEPF is faster than SM since it does not
need to fit a line for the whole set of scan points prior to decide to split or not.
Furthermore, for 180◦ scans IEPF gives better results as discussed in Section 7.2.4.
Certainly, IEPF is commonly used for feature-based SLAM [4, 120, 121].1

7.3 Linear Fitting

The linear fitting is a mathematical procedure for finding the best-fitting line l to linear fitting

a given set of points P by minimizing the sum of the squares of the offsets (the
residuals) of the points from the line model. In the presence of noisy data the
linear fitting algorithm becomes an important election. Figure 7.8 shows the most
common choices, where the robust estimation methods actually cover a great bunch
of statistical solutions.

Linear
Fitting

Algorithms

Robust
Estimation
Methods

Total
Least

Squares

Least
Squares

Figure 7.8: Line Fitting Algorithms

The fitting procedure and the line model employed are key aspects of the line
extraction algorithms. They affect the quality of the detected line’s parameters.
The parameters of the model are adjusted to find the optimal value of a merit merit function

function, yielding the best-fit parameters. Typical data never exactly fit the model best-fit parameters

that is being used. Therefore, we need to test the goodness-of-fit against some goodness-of-fit

useful statistical standard to assess whether or not the model is appropiate.

The line model used to fit the set of observations is also a design element to
choose that constraints the fitting process and affects the goodness-of-fit. It is
common to used the Intercept-Slope model y = mx+ b to derive the mathematical
expressions of the best-fit parameters m and b. However, in the presence of vertical
lines this model is not suitable. A good replacement is the Hessian model ρ =
x cos θ + y sin θ, that can represent any kind of line properly.

Most of the linear fitting methods discussed below are taken from [157, 158].
Other methods especially aimed for robust estimation are covered by [114, 115] and
several articles or technical reports [3, 30, 37, 112, 131]. In either case, they provide
the analytical expressions for direct computation of the line parameters. However,
they usually employed the Intercept-Slope model or a general vector notation, so

1It may be refered to as SM though, since IEPF is usually regarded as a simple variant.
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they must be adapted. Fortunately, some works regarding line extraction from range
laser scans provide equations for the Hessian model parameters ρ and θ [3, 4, 121].

7.3.1 Least Squares

The Least Squares (LS) method is the simplest approach [115, 157]. It is alsoleast squares

refered to as the Minimum Squared Error (MSE) method [45, 46]. It minimizes theminimum squared error

sum of the squares of the offsets instead of the offset absolute values because this
allows the residuals to be treated as a continuous differentiable quantity. However,
because squares of the offsets are used, outlying points can have a disproportionate
effect on the fit, a property which may or may not be desirable depending on the
problem at hand. Figure 7.9 shows the graphical difference between the plain offset
or vertical distance (a) and the absolute offset or perpendicular distance (b), which
are employed by the LS and Total Least Squares (TLS) algorithms, respectively.
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(b) Total Least Squares Fitting.
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Figure 7.9: Distance between original points and fitting line

In our case, the perpendicular distance is clearly the right choice, since scan
points have errors in both variables x and y, and there are vertical lines. Indeed,
LS performs poorly with lines that has a slope m greater than m = 1. Anyway, LS
is explained now and TLS is later introduced in Section 7.3.2, since its deduction
is more complex. Thus, LS uses the vertical deviations R2 computing the vertical
distances dvi , meanwhile TLS uses the perpendicular deviations R⊥ computing the
perpendicular distances d⊥i . The vertical distance dvi for each point i is shown
below. Later, d⊥i will be devised in terms of dvi for the TLS algorithm.

dvi = |yi − (b+mxi)| (7.1)

Vertical Least Squares fitting proceeds by finding the sum of the squares of the
vertical deviations R2 of a set of n data points

R2 =
n∑
i=1

(yi − f(xi | a1, . . . , ak))2 (7.2)

from a function f of k variables. For a linear fit we have

f(x | b,m) = b+mx (7.3)
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which is the Intercept-Slope model with y-intercept b and slope m. Hence, the
model parameters are obtained by minimizing

R2(b,m) =
n∑
i=1

(yi − (b+mxi))
2 (7.4)

The best-fit parameters are then

m =
cov (x, y)

σ2
x

=
SSxy
SSxx

(7.5)

b = ȳ −mx̄ (7.6)

where

SSxx =
n∑
i=1

(xi − x̄)2 =

(
n∑
i=1

x2
i

)
− nx̄2 (7.7)

SSyy =
n∑
i=1

(yi − ȳ)2 =

(
n∑
i=1

y2
i

)
− nȳ2 (7.8)

SSxy =
n∑
i=1

(xi − x̄) (yi − ȳ) =

(
n∑
i=1

xiyi

)
− nx̄ȳ (7.9)

which might be also written as the variances σ2
x and σ2

y, and the covariance cov (x, y)

σ2
x =

SSxx
n

(7.10)

σ2
y =

SSyy
n

(7.11)

cov (x, y) =
SSxy
n

(7.12)

and

x̄ =
1
n

n∑
i=1

xi (7.13)

ȳ =
1
n

n∑
i=1

yi (7.14)

are the means with respect to x and y coordinates.
If we consider the Hessian model ρ = x cos θ + y sin θ the merit function turns

into

R2(ρ, θ) =
n∑
i=1

(ρ− xi cos θ − yi sin θ)2 (7.15)

The model parameters ρ and θ that are obtained by minimizing (7.15) actually
yields the solution for the perpendicular offsets, i.e. the TLS best-fit parameters.
In fact, it is common to employ the Hessian model since it simplifies the derivation
and the expressions of the TLS method [3, 4, 121]. Later, in Section 7.3.2 we will
see those expressions, but for now we will devised the expressions that give the LS
best-fit parameters. Although it is not found in the literature, it is straightforward to
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derive the expressions for the Hessian model parameters from those of the Intercept-
Slope model. We only have to apply the relations between their parameters

θ = arctan− 1
m

= atan2 (−1,m) (7.16)

ρ = b sin θ (7.17)

Hence, the best-fit parameters for the Hessian model are

θ = atan2 (−SSxx, SSxy) (7.18)

ρ = x̄ cos θ + ȳ sin θ (7.19)

7.3.2 Total Least Squares

The Total Least Squares (TLS) [37, 158] overcomes the main problem of the LStotal least squares

method. TLS is also known as the Eigenvector method [45] when derived in vectoreigenvector

notation. The method is also known as the Least Squares for Errors in Both Vari-errors in both variables

ables or Coordinates, or simply the Least Squares Orthogonal [115, 131], since it
minimizes the perpendicular distance d⊥i from the points i = 1, . . . , n to the model,
as mentioned above and shown in Figure 7.9(b). Such distance d⊥i in terms of the
vertical distance dvi for the line model (7.3) is

d⊥i =
dvi√

1 +m2
(7.20)

The deduction of this equivalence is shown below. The author may skip this proof
at first reading. It is actually quite straightforward and it is based on the relation
between the triangles shown in Figure 7.10.
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Figure 7.10: Relation between perpendicular and vertical distance
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Relationship between perpendicular and vertical distance. First of all, we apply the
Pythagorean theorem to the upper triangle in Figure 7.10

d2
vi = d2

⊥i + a2
i

d⊥i =
√
d2
vi − a

2
i (7.21)

we take the possitive solution of the square root since d⊥i is a distance, i.e. d⊥i ≥ 0.
The slope m of the line model can be expressed both as the quotient of the

lower triangle’s catheti mx and my

m =
my

mx
(7.22)

and as the quotient of the upper triangle’s catheti ai and d⊥i

m =
my

mx
=

ai
d⊥i

(7.23)

Hence
d⊥i =

ai
m

(7.24)

which is equal to (7.21)

d⊥i =
ai
m

=
√
d2
vi − a

2
i (7.25)

Operating to obtain ai yields

ai
m

=
√
d2
vi − a

2
i (7.26)

a2
i

m2
= d2

vi − a
2
i (7.27)

a2
i =

(
d2
vi − a

2
i

)
m2 (7.28)

a2
i −

(
d2
vi − a

2
i

)
m2 = 0 (7.29)

a2
i

(
1 +m2

)
−m2d2

vi = 0 (7.30)

ai =

√
(mdvi)

2

1 +m2
(7.31)

ai =
mdvi√
1 +m2

(7.32)

Finally, we replace the expression of ai in (7.24), that is

d⊥i =
ai
m

=
mdvi

m
√

1 +m2
(7.33)

d⊥i =
dvi√

1 +m2
(7.34)

The model parameters are obtained by minimizing the perpendicular deviations
R2
⊥ of a set of n data points from the line model (7.3)

R2
⊥(b,m) =

n∑
i=1

(yi − (b+mxi))
2

1 +m2
(7.35)
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The best-fit parameters are then

m = −M ±
√
M2 + 1 (7.36)

b = ȳ −mx̄ (7.37)

where

M =
SSxx − SSyy

2SSxy
(7.38)

where SSxx, SSyy and SSxy are those of (7.7), (7.8) and (7.9). Similarly, x̄ and
ȳ are the means, as in (7.13) and (7.14). The reader may compare the expressions
of the line model parameters obtained here with the TLS method with those of the
LS method discussed in Section 7.3.1.

We return to the topic of the Hessian model ρ = x cos θ + y sin θ now, that
yields the merit function (7.15). As previously pointed, the minimization results in
the best-fit parameters for the TLS fitting [3, 4, 121], which are

θ =
1
2

atan2 (−2SSxy, SSyy − SSxx) (7.39)

ρ = x̄ cos θ + ȳ sin θ (7.40)

In the literature it is common to find the TLS method as a robust estimator
that includes an associated weight ωi for each point [4, 115, 121]. That is actually
a robust estimation method known as Weighted TLS, discussed in Section 7.3.3.
The expressions given here might be thought as a particular case with ωi = 0 for
i = 1, . . . , n.

It is also possible to derive the expressions above from those of the Intercept-
Slope model. Such mathematical derivation consists basically on applying the rela-
tions (7.16) and (7.17) between the Hessian model and the Intercept-Slope param-
eters. To obtain (7.39) the numerator and denominator of the constant M must
be chosen properly and the expression

atan2 (y, x) = 2 arctan
(

y

x+
√
x2 + y2

)
(7.41)

given by the tangent half-angle formula, must be applied at the end.

7.3.3 Robust Estimation Methods

The literature on data modeling is considerably extent and many methods have
statistical foundations. The robust estimation is meant to deal with noisy data. It
allows to model such data within a confidence interval, which might be taken into
account by the algorithms that work with the model. Here we will discussed only
some classical and common robust regression methods focused on line fitting withrobust regression

range laser scans. Other methods —even other robust ones— are briefly described
in Section 7.3.4.

The following sections discussed the robust variants of the Least Squares and
Total Least Squares methods shown thus far. They introduce weights associated
with each raw point. Each weight ωi describes the uncertainty of the point i based
on the measurement process. The uncertainty is usually stated as the standard
deviation σi, that must be known in advance —it is often given in the measurement
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sensor data sheet or through a calibration process. For instance, the SICK LMS200
range laser has a sistematic error of ±15mm and statistical error of 5mm [70]. If we
consider the sistematic error of ε = ±15mm it is possible to assign a standard devi-
ation σi to each range measurement ρimm according with the following expression

σi =
ρi
15

(7.42)

which states that σi is inversely proportional to the ε.

Weighted Least Squares. Chi-Square Fitting

In [115] is devised a Weighted Least Squares (WLS) method coined Chi-Square chi-square

fitting. It states that the maximum likelihood estimate of the model parameters is
obtained by minimizing

χ2(b,m) =
n∑
i=1

(
yi − (b+mxi)

σi

)2

(7.43)

For linear models, the probability distribution for different values of χ2 at its mini-
mum can nevertheless be derived analytically, and is the chi-square distribution for
n− k degrees of freedom, where n is the number of points and k = 2 is the num-
ber of parameters of the line model. This method takes into account the standard
deviation σi of each data point i, which makes it a robust estimation technique.

The best-fit parameters m and b have the same expressions (7.5) and (7.6) as
LS, but the sums SSxx, SSyy and SSxy are different

SSxx =
n∑
i=1

(xi − x̂)2

σ2
i

=

(
n∑
i=1

x2
i

σ2
i

)
− n̂x̂2 (7.44)

SSyy =
n∑
i=1

(yi − ŷ)2

σ2
i

=

(
n∑
i=1

y2
i

σ2
i

)
− n̂ŷ2 (7.45)

SSxy =
n∑
i=1

(xi − x̂) (yi − ŷ)
σ2
i

=

(
n∑
i=1

xiyi
σ2
i

)
− n̂x̂ŷ (7.46)

where x̂ and ŷ are pseudo-means

x̂ =
1
n̂

n∑
i=1

xi
σ2
i

(7.47)

ŷ =
1
n̂

n∑
i=1

yi
σ2
i

(7.48)

that replace the means x̄ and ȳ, and

n̂ =
n∑
i=1

1
σ2
i

(7.49)
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Weighted Total Least Squares. Errors in Both Variables

Similarly to WLS, in [115] is also devised a Weighted Total Least Squares (WTLS)
method under the name Errors in Both Coordinates. It extends the TLS merit
function (7.35) to incorporate the uncertainties σxi and σyi of both variables xi
and yi. Doing so, the weight proposed

ωi =
1

σxi +m2σyi
(7.50)

actually resembles the perpendicular offsets and yields the merit function below for
the Intercept-Slope model

χ2(b,m) =
n∑
i=1

(
yi − (b+mxi)
σxi +m2σyi

)2

(7.51)

The authors argue that the m2 term in the denominator is an impediment to ob-
tain the analytical expressions of the model parameters. Actually, b has the same
analytical expression as (7.6) with pseudo-means

x̂ =
1
n̂

n∑
i=1

ωixi (7.52)

ŷ =
1
n̂

n∑
i=1

ωiyi (7.53)

that replace the means x̄ and ȳ, and

n̂ =
n∑
i=1

ωi (7.54)

where ωi is taken from (7.50). Nonetheless, m must be computed numerically.
Fortunately, other works that discuss the WTLS method for the Hessian model

ρ = x cos θ + y sin θ [4, 121], considering the merit function below

χ2(b,m) =
n∑
i=1

ωi (ρ− xi cos θ − yi sin θ)2 (7.55)

provide the same expressions (7.39) and (7.40) as TLS for the best-fit parameters
ρ and θ, but the sums SSxx, SSyy and SSxy incorporate the weight ωi

SSxx =
n∑
i=1

ωi (xi − x̂)2 =

(
n∑
i=1

ωix
2
i

)
− n̂x̂2 (7.56)

SSyy =
n∑
i=1

ωi (yi − ŷ)2 =

(
n∑
i=1

ωiy
2
i

)
− n̂ŷ2 (7.57)

SSxy =
n∑
i=1

ωi (xi − x̂) (yi − ŷ) =

(
n∑
i=1

ωixiyi

)
− n̂x̂ŷ (7.58)

where x̂ and ŷ are the pseudo-means (7.52) and (7.53), and n̂ is taken from (7.54).
However, notice that they consider the weight ωi as a single value per point, instead
of one per coordinate as in (7.50). Furthermore, the nonlinear dependency on m is
omitted, allowing the analytical derivation above.
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7.3.4 Other Linear Fitting Methods

Some of the most common and successful methods employed for linear modeling
are briefly commented below. They usually demand higher computational resources
or must be solved numerically. In contrast, the methods discussed thus far pro-
vide analytical expressions to compute the best-fit parameters of the linear model
efficiently. Therefore, they are suitable for real time applications, while only some
variants or optimizations of the following techniques are thought for such scenario.

Normal equations Within the general linear Least Squares topic we find the
Normal equations of the Least Squares problem [115]. They are presented in normal equations

matrix form and require to solve a linear system, analytically or numerically.

SVD In many cases the Normal equations are very close to singular, in which case
you may get no solution at all. The Singular Value Decomposition (SVD) singular value

decompositionproduces a solution that is the best approximation for an overdetermined
system, and whose values are smallest for an underdetermined system, in the
Least Squares sense [115].

M-Estimates There are various sorts of robust statistical estimators, where M- m-estimates

Estimates are usually the most relevant class for model fitting, i.e. estimation
of parameters [115, 121]. To fit a model by means of an M-Estimate, you first
decide with M-Estimate to employ. It is common to choose the Lorentzian
function [131] or the median, that simplifies the process and is known as
Minimizing Absolute Deviation [115]. minimizing absolute

deviation
Monte Carlo Random sampling methods like Monte Carlo (MC) methods might monte carlo

be useful to estimate parameters since they are used to implement Bayesian
methods [115] —e.g. the Markov Chain Monte Carlo (MCMC) method. markov chain monte

carlo
RANSAC The RANdom SAmple Consensus algorithm is commonly used for robust random sample

consensusestimation, since it is able to estimate the parameters with accuracy even when
outliers are present in the data set [121, 161]. There exists some variants,
like MSAC [155] and MLESAC [154] that produce better results, and even
optimizations like Efficient RANSAC [124], that may be suitable for real time.

Other There exists other methods that are basically modifications of the ones
above, like the Window SAmpling Consensus (WSAC) method proposed by window sampling

consensus[121], which has a random algorithm similar to MSAC.

7.3.5 Discussion

For real time applications we may choose between the Least Squares or the Total
Least Squares methods basically. Other methods might be considered, but they
usually have a higher computational cost or they are complex to implement. LS
and TLS have fairly the same computational cost O (n) for n points. Thus, the
decision is based on the accuracy. TLS is clearly better than LS because it manage
perpendicular offsets and support vertical lines better. Furthermore, TLS must be
used with the Hessian model ρ = x cos θ + y sin θ, since it can represent vertical
lines properly and the best-fit parameters expressions (7.39) and (7.40) are simpler.

The robust variants of LS and TLS incorpore a weight ωi for each point at no
additional computational cost. However, we need to assign ωi according with the
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measurement sensor specifications, not always available. More robust methods like
RANSAC might be applied, but only some variants or optimizations are suitable for
real time. In general, TLS fitting performs well with range lasers, since they are
very precise. Anyway, robust estimation methods are less sensitive to outliers and
may model data with greater accuracy.

7.4 Corner Extraction

In order to detect corners a simple but effective method, based on the lines obtained
by a line extraction algorithm, might be applied. The proposed corner extractor
shown in Algorithm 17 computes all possible line-line intersections in the line 4.
This approach has a computational cost of O

(
n2
)
, since it computes

∑n−1
i=1 n− i =

n(n−1)
2 line-line interceptions, where n is the number of lines detected. Only those

intersection points that are close to the intercepting lines are saved. The distances
to each line di and dj are computed in lines 5 and 6 as the lower distance to the
scan points that form the line. Therefore, only real corners are retrieved in line 8,
and the rest are discarded.

Algorithm 17 Corner Extraction

Require: List P = 〈p1, . . . , pn〉 where pi = (xi, yi) are laser scan points and
threshold dmax that represents the max distance from the interception point p
of a pair of lines (li, lj) to the actual segments l̄i and l̄j that they represent.
A line extraction method LineExtractor(P, . . .) to obtain the list of lines L
that will be analyzed to find interceptions, i.e. corners.

Ensure: List C = 〈c1, . . . , cm〉 with detected corners ci.
Algorithm: CornerExtractor(P, dmax) return C

1: L = LineExtractor(P, . . .) . extract lines
2: for all pair of lines (li, lj) ∈ L do . analyze all possible pairs of lines
3: if li and lj intercept then
4: p = intersection of li and lj . interception point
5: di = min distance from p to l̄i
6: dj = min distance from p to l̄j
7: if di, dj ≤ dmax then
8: add p to C . real interception
9: end if

10: end if
11: end for
12: return C

The algorithm accepts a threshold parameter dmax that specifies the maximum
distance allowed from an intersection p to the lines li and lj that have produced
it. It is meant to decide whether p is a real interception or not. Therefore, if the
distance to at least one line is greater than dmax, p is discarded because it is a
virtual intersection, not present in the environment.
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7.5 Sensor Data Synchronization

When extracting features or information from multiple sensors is important to syn-
chronize the retrieved data to describe the environment at a particular instant of
time. Furthermore, this allows to integrate the raw information from such sensors
into semantic information as part of a process known as sensor fusion [26, 97]. In sensor fusion

this work we only use one measurement sensor —a range laser—, so there is no
sensor fusion performed actually. However, we also receive odometry information
from the wheel encoders, that must be put in correspondence with the laser scans.

Init: ts, to = min {to, ts} t
to

ts

Sync: sample odometry t
to

ts

until to ≥ ts t
to

ts

Figure 7.11: Odometry and Scan synchronization

Odometry and laser scans must be synchronized. Clearly, it is easier to interpo-
late the odometry at a desire time than a complete set of scan points. Therefore,
we force to obtain an odometry sample with a timestamp to later than the laser
scan one ts, as shown in Figure 7.11. Then we can interpolate the robot pose at ts
from the odometry samples taken at to−1 and to.

Case I: to < ts =⇒ tc = to − to−1 t
to−1 to

ts

tc

Case II: to ≥ ts =⇒ tc = ts − to−1 t
to−1 to

ts

tc

Figure 7.12: Control time computation

Additionally, the control time tc is generally computed as the difference be-
ween two consecutive odometry samples taken at to−1 and to, that is the case I
in Figure 7.12. The control time is a key element to compute the motion model
embedded in the SLAM algorithms. When the odometry is interpolated at ts, tc is
computed as shown for the case II in Figure 7.12, due to the odometry and laser
scan synchronization.

7.6 Summary

The feature extraction process is one of the main steps of feature-based SLAM.
The environment is represented by a map built with features, that bring a more
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significative and low-dimensional representation space than raw data gather by the
measurement equipment. The measurement sensor conditions the type of features
that may be detected and the extraction process. For range lasers is common to
extract lines and corner points, that are extracted using the detected lines to obtain
real line-line interception points [45, 102, 120, 122, 127].

The lines extracted are fit to the scan points applying linear fitting methods.
There are several linear fitting methods and many of them are robust in the presence
of outliers. This methods are also known as estimators since they are used to
estimate the best-fit parameters of a particular line model.

In this thesis we use one of the most widely used line extraction methods,
Iterative End-Point Fit. As discussed in Section 7.2.4, although this variant of Split
& Merge is very efficient and accurate, we employ an extended version that filters
noisy points and outliers, similarly to clustering techniques [18, 102, 120]. The
Total Least Squares fitting method for the Hessian model ρ = x cos θ + y sin θ is
used to fit the extracted lines, since it suffices for range laser scans. However, other
robust estimation methods might be used provided they are suitable for real time
SLAM.



Chapter 8

Data Association

8.1 Introduction

In real SLAM applications, the correspondences ct between the observations zt and
the landmarks mt of the map are rarely known. The number n of landmarks in
the environment is also unknown. When the robot performs an observation of the
environment, such observation must be associated with a landmark in the map or
incorporated as a new landmark. This process is known as data association, which data association

deals with the problem of the mapping between observations and landmarks [96].
The data association problem is one of the most complex in SLAM [100, 103].
The process is highly influenced both by the noise accumulated in the robot pose
and the measurement error. That is, uncertainty in the SLAM posterior generates
data association ambiguity . Two factors contribute to uncertainty in the SLAM ambiguity

posterior: measurement noise and motion noise, each producing a different kind of
data association ambiguity [93].

We will refer to data association ambiguity caused by measurement noise as
measurement ambiguity . An example of measurement ambiguity is shown in Fig- measurement ambiguity

ure 8.1, where two ellipses depict the range of probable observations from two
different landmarks. The observation shown as a red circle plausibly could have
come from either landmark. Attributing an observation to the wrong landmark due
to measurement ambiguity will increase the error of the map and robot pose, but
its impact will be relatively low becuase the observation could have been generated
by either landmark with high probability. Therefore the effect on the landmark
positions and the robot pose will be small.

landmark

position

uncertainty

Figure 8.1: Measurement Ambiguity

81
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Ambiguity in data association caused by motion noise can have much more
severe consequences on estimation accuracy. Higher motion noise leads to higher
pose uncertainty after incorporating a control. If this pose uncertainty is high
enough, assuming different robot poses in this distribution will imply drastically
different data association hypotheses. Such motion ambiguity , shown in Figure 8.2,motion ambiguity

is easily induced if there is significant rotational error in the robot’s motion.

pose uncertainty

Figure 8.2: Motion Ambiguity

A data association algorithm is composed by two basic elements: a compatibilitycompatibility test

test between observations and landmarks for a given robot pose estimation, and a
selection criterion to choose the best matchings among the set of compatible match-selection criterion

ings [100]. There exists a great variety of solutions for the data association problem.
In the sequel we will focus on two methods, while Section 8.4 gathers other alter-
natives described in short. The Maximum Likelihood (ML) method is discussed
in detail since it is recommended by the authors of the FastSLAM algorithm em-
ployed in this work [69, 96, 100, 103]. This data association technique is tightly
related with the classic Gated Nearest Neighbor (GNN) algorithm widely cited in
the literature [92, 93, 94, 96, 148, 149]. Therefore, GNN is presented first to intro-
duce the topic and show some of the fundamentals of the ML approach described
subsequently.

8.2 Gated Nearest Neighbor

The Gated Nearest Neighbor (GNN) algorithm is a classic technique usually appliedgated nearest neighbor

to tracking problems [9]. This method is also called Nearest Neighbor Gating and
usually referred to as Nearest Neighbor (NN) simply. The normalized squared
innovation χ2 test is used to determine the compatibility, and then the nearest
neighbor rule, that takes the smallest Mahalanobis distance, is used to select the
best matchings [100]. The great advantage of GNN is its conceptual simplicity and
O (mn) computational complexity, where m is the number of features observed and
n is the number of landmarks in the map.
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GNN is reliable for features such as lines detected with range lasers, where clutter
is low and sensor precision is high, as long as the motion uncertainty is moderate
[27]. However, the reliability quickly plummets as the uncertainty of features relative
to the robot pose increases, as happends when revisiting previously mapped regions
after a long loop. Reliability also plummets when less precise sensors are employed,
e.g. sonar or edge-based monocular vision [100].

8.2.1 Mathematical Derivation

We will now derive the mathematical foundations of the Gated Nearest Neighbor
algorithm. The reader not interested in the mathematical details is invited to skip
this section at first reading. Nevertheless, it is recommended to read it for a bet-
ter understanding of the similarities and ramifications of the Maximum Likelihood
technique later discussed.

In stochastic mapping [132] the state of the robot r and a set of n landmarks
{l1, . . . , ln} of the environment is represented by a vector x. Let x̂ be the estimation
of the robot and feature locations, and P the covariance of the estimation error

x̂ =


x̂r
x̂l1

...
x̂ln

 (8.1)

P =


Pr Prl1 · · · Prln

PT
rl1

Pl1 · · · Pl1ln
...

...
. . .

...
PT
rln

PT
l1ln

· · · Pln

 (8.2)

Similarly, let ŷ represent a set of m measurements {f1, . . . , fn} of environment
features observed by a sensor onboard affected by white Gaussian noise u ∼ N (0,S)

ŷ = y + u (8.3)

where y is the theorical value of the observations. Thus, ŷ and the covariance
matrix S are

ŷ =


ŷr
ŷf1

...
ŷfm

 (8.4)

S =


Sr Srf1 · · · Srfm

STrf1 Sf1 · · · Sf1fm
...

...
. . .

...
STrfm STf1fm · · · Sfm

 (8.5)

A measurement fi and its corresponding landmark lji are related by an implicit implicit measurement
functionmeasurement function of the form

fiji(x,y) = 0 (8.6)
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which states that the relative location between the measurement and the corre-
sponding landmark must be null.

The purpose of the data association process is to generate a hypothesis Hm =
{j1, . . . , jm} that pairs each measurement fi with a landmark lji of the map. Data
association algorithms must select in some way one of all hypotheses carrying out
validations to determine the compatibility between measurements and landmarks.
The solution space is exponential an can be represented as an Interpretation Treeinterpretation tree

of m levels [63], to which can be applied searching techniques from the Artificial
Intelligence field, as it is done by the JCBB algorithm described in Section 8.4.2.

If a single measurement is considered, GNN is called Individual Compatibilityindividual compatibility
nearest neighbor Nearest Neighbor (ICNN). It simply pairs each measurement with the landmark

considered most compatible according to (8.6). Since the implicit measurement
function is non-linear usually, linearization around the current estimation is necessary

fiji(x,y) ' hiji + Hiji(x− x̂) + Giji(y − ŷ) (8.7)

where

hiji = fiji(x̂, ŷ) (8.8)

Hiji =
∂fiji
∂x

∣∣∣∣
(x̂,ŷ)

(8.9)

Giji =
∂fiji
∂y

∣∣∣∣
(x̂,ŷ)

(8.10)

The vector hiji represents the innovation of the paring between fi and lji . Its
covariance can be obtained from (8.6) and (8.7) as

Ciji = Hijicov (x− x̂) HT
iji + Gijicov (y − ŷ) GT

iji

= HijiPHT
iji + GijiSGT

iji

(8.11)

The individual compatibility (IC) between fi and lji can be determined usingindividual compatibility

an innovation test that measures the Mahalanobis distance

D2
iji = hTijiC

−1
iji

hiji < χ2
d,α (8.12)

where d = dim (fiji) and α is the desired confidence level. This χ2 test, applied to
the predicted state, determines the subset of landmarks that are compatible with a
measurement fi.

Finally, the nearest neighbor selection criterion for a given measurement consists
in choosing among the landmarks that satisfy (8.12), the one with the smallest
Mahalanobis distance.

8.3 Maximum Likelihood

Montemerlo and Thrun propose the Maximum Likelihood approach for the datamaximum likelihood

association problem in SLAM [92, 93, 94, 96, 149]. In particular, they propose to
choose the data association nt that maximizes the likelihood of the sensor measure-
ment zt given all available data

n̂t = arg max
nt

p(zt | st, zt−1, ut, n̂t−1) (8.13)
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The term p(zt | st, zt−1, ut, n̂t−1) is referred to as a likelihood, and this approach
is an example of a Maximum Likelihood (ML) estimator. Such data association is
also known as Nearest Neighbor data association, interpreting the negative log
likelihood as a distance function. For Gaussians, the negative log likelihood is the
Mahalanobis distance and the ML estimator selects data associations by minimizing
it. The reader might recall these concepts from the GNN data association method
described in the previous section, which are detailed in the mathematical derivation.

The most common approach to data association in SLAM is to assign each
observation using a Maximum Likelihood rule [93], i.e. each observation is assigned
to the landmark most likely to have generated it. If the maximum probability is
below some fixed threshold p0, the observation is considered as a new landmark
that must be incorporated to the map.

ML data association works well when the correct data association is significantly
more probable than the incorrect associations. However, if the measurement un-
certainty is high, more than one data association will receive high probability. If
a wrong data association is picked, this decision can have a catastrophic result on
the accuracy of the resulting map [93, 103]. Such data association ambiguity can
be induced easily if the sensors are very noisy. One approach to this problem is to
only incorporate observations that lead to unambiguous data associations, but this
is unfeasible in noisy environments because many observations will go unprocessed.

Algorithm 18 Maximum Likelihood

Require: Measurement zt, control ut, pose xt and the Nt−1 features known (map)
with their mean µj,t−1 and covariance Σj,t−1, for j = 1, . . . , Nt−1.
A measurement prediction function h(µt−1, xt), its Jacobian h′(µt−1, xt) and
the measurement model noise Qt.
The importance factor p0 used for new features.

Ensure: Weight w and index ĉ of maximum likelihood correspondence or feature.
Algorithm: MaximumLikelihood(zt, ut, xt, Nt−1) return 〈w, ĉ〉

1: for j = 1 to Nt−1 do . measurement likelihoods
2: ẑj = h(µj,t−1, xt) . measurement prediction
3: Hj = h′(µj,t−1, xt) . calculate Jacobian
4: Qj = HjΣj,t−1H

T
j +Qt . measurement covariance

5: wj =
∣∣2πQj∣∣−1

2

exp
{
−1

2
(zt − ẑj)TQ−1

j (zt − ẑj)
}

. likelihood correspondence

6: end for

7: wNt−1+1 = p0 . importance factor, new feature
8: w = max

j=1,...,Nt−1+1
wj . max likelihood correspondence

9: ĉ = arg max
j=1,...,Nt−1+1

wj . index of ML feature

10: return 〈w, ĉ〉

The FastSLAM algorithm discussed in this thesis uses an EKF to estimate the
location of each landmark present in the environment. The probability of the Max-
imum Likelihood estimation for a particular data association is computed with the
EKF equations commented in Chapter 3. Therefore, the data association is ob-
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tained with the Algorithm 18. It applies the EKF to the mean µj,t and covariance
Σj,t of each landmark j = 1, . . . , n of the map. The probability of each possible
data association is saved in line 5 to later retrieve the data association with higher
probability in lines 7-9. If the maximum probability is below the threshold p0 given
in line 7, the observation is incorporated into the map as a new landmark. On the
other hand, if a particular observation is assigned to different landmarks, none of
the data associations are considered [93].

The measurement model is assumed to be affected by white Guassian noise with
mean 0 and covariance matrix Qt, as shown in line 4. The actual noise depends on
the sensor and it yields a covariance matrix of the form

Qt =
(
σ2
ρ 0

0 σ2
θ

)
(8.14)

that represents the noise over the range ρ and bearing θ of the observations. Juan
Nieto and Tim Bailey recomend the initial values below

σ2
ρ = 0.12 = 0.01 (8.15)

σ2
θ =

(
π

180

)2

≈ 0.0003 (8.16)

in the SLAM Package of Tim Bailey [136].

8.3.1 Mathematical Derivation

We will now derive the mathematical expression to compute the data associations
nt using the ML approach. As usual, the reader not interested in the mathematical
details is invited to skip this section. Anyway, it is encouraged to read the GNN
mathematical derivation given in Section 8.2.1 before this one.

In the case of the EKF, the probability of the observation can be written as a
function of the difference between the observation zt and the expected observation
ẑnt for the landmark nt [93]. This difference is known as innovation and it alsoinnovation

appears in the GNN derivation. Let nt be the associations vector that pairs each
measurement with a landmark in the map at time t, the path st and the controls ut

accomplished by the robot, and n̂t−1 the associations vector up to t− 1, the data
association heuristic of (8.13) yields

n̂t = arg max
nt

p(zt | st, zt−1, ut, n̂t−1) (8.17)

= arg max
nt

1√∣∣2πZt∣∣ exp
{
−1

2
(zt − ẑnt)TZ−1

t (zt − ẑnt)
}

(8.18)

= arg max
nt

∣∣2πZt∣∣−1
2 exp

{
−1

2
(zt − ẑnt)TZ−1

t (zt − ẑnt)
}

(8.19)

which gives the data association n̂t that maximizes the likelihood of observe the
measurement zt given all avialable data. The covariance matrix Zt is obtained
computing the line 4 of Algorithm 18, where it is denoted by Qj for the landmark j.
The expression (8.19) is often reformulated in terms of the negative log likelihood,
as follows

n̂t = arg min
nt

ln
∣∣Zt∣∣+ (zt − ẑnt)TZ−1

t (zt − ẑnt) (8.20)
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where the second term is known as Mahalanobis distance, a distance metric nor-
malized by the covariances of the observation and the landmark estimate, i.e. the
innovation. For this reason, data association using this metric is often referred to
as Nearest Neighbor data association [9].

8.4 Other Data Association Methods

There exist a number of robust data association methods in the literature that might
produce better results that the techniques discussed thus far. Here we describe
briefly some of the most common methods as they appear in [93].

8.4.1 Local Map Sequencing

The Local Map Sequencing (LMS) technique is aimed to build indoor maps using local map sequencing

sonar data [139]. The algorithm collects sonar readings as the robot moves over a
short distance and they are processed by two Hough Transforms that detect corners
and line segments in the robot’s vicinity given the entire set of observations. These
features are used to build a local map. Multiple local maps are pieced together to
build a global map of the environment.

Data association is robust because multiple sensor readings, taken from different
robot poses, vote to determine the correct interpretation of the data. Alternatively,
RANSAC is suggested by the authors as another voting algorithm [139].

8.4.2 Joint Compatibility Branch and Bound

If multiple observations are gathered per control, the Maximum Likelihood approach
treats each data association decision as an independent problem. However, the data
associations of simultaneous observations are correlated. Moreover, considering the
data association of each of the observations separately ignores the issue of mutual
exclusion. These problems can be remedied by considering the data association of
all of the observations simultaneously.

That is what the Joint Compatibility Branch and Bound (JCBB) algorithm does joint compatibility
branch and bound[9, 100, 105]. Joint data association hypotheses are compared using joint compat-

ibility, a measure of the probability of the set of observations ocurring together.
The algorithm traverses the Interpretation Tree [62] that contains all possible joint interpretation tree

correspondences. Many hypotheses can be excluded without traversing the entire
tree, reducing the computational cost.

8.4.3 Combined Constraint Data Association

A similar algorithm to JCBB called Combined Constraint Data Association (CCDA) combined constraint
data associationconstructs an undirected graph of data association constraints coined Correspon-

dence Graph [7]. Each node represents a candidate pairing of observed features
and landmarks, possibly determined using a Nearest Neighbor test. Edges between
nodes represent joint compatibility between pairs of data associations. The set of
joint data associations that correspond to the largest clique is retrieved. Although
the result of JCBB and CCDA are similar, the later is able to determine data asso-
ciations even when the robot pose is completely unknown.
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8.4.4 Iterative Closest Point

The Scan Matching method is a data association technique based on a modifiedscan matching

version of the Iterative Closest Point (ICP) algorithm [12, 65, 84]. This algorithmiterative closest point

alternates a step in which new correspondences between data are identified and a
step in which a new robot path is recovered. Such iterative optimization is similar
to Expectation Maximization and RANSAC [93].

8.4.5 Multiple Hypothesis Tracking

All data association methods presented thus far choose a single data association
hypothesis. Contrary, the Multiple Hypothesis Tracking (MHT) algorithm main-multiple hypothesis

tracking tains a set of hypothesized tracks of multiple targets [117]. If an observation has
multiple data associations, new hypotheses are created for each correspondence.
Some authors pause map-building when data association becomes ambiguous to
reduce the computational cost [99].

8.5 Discussion

The data association methods discussed above are presented in the mindmap of
Figure 8.3. In this thesis we employ the Maximum Likelihood technique because
it is proposed by the authors of the FastSLAM algorithm [93] used in the present
work. In the literature, it is common to consider a single observation per control, but
we will manage multiple observations in the straightforward way, i.e. considering
observation independence. Such assumption is actually wrong, as mentioned in
Section 8.4.2 where the JCBB algorithm is presented as a possible solution to the
problem.

Data
Association

Methods

ML

GNN ICNN

LMS

JCBB

CCDA

ICP
Scan

Matching

MHT

Figure 8.3: Data Association Methods

Most robust data association methods exploit geometric and probabilistic con-
straints among the possible data associations, when multiple observations are con-
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sidered per control. Other methods consider multiple hypotheses, which is the case
of MHT. Nonetheless, the SLAM algorithm might also favor the data association
problem. In fact, FastSLAM takes a multi-hypothesis approach where each particle
represents a different hypothesized path of the robot, so data association decisions
can be made on a per-particle basis [93]. Particles that pick the correct data as-
sociation will receive high probabilities because they explain the observations well.
Particles that pick wrong associations will receive low probabilities and be removed.

While per-particle Maximum Likelihood data association addresses motion am-
biguity, it does not address measurement ambiguity. Each observation is paired
with the landmark most likely to have generated it, but if the measurement error
is high there might be several plausible data associations per observation. In that
case, an alternative approach assigns the correspondences probabilistically in accor-
dance to their likelihoods. Such approach can be described as Monte Carlo Data monte carlo data

associationAssociation. An equivalent scheme is proposed by Nieto et al. [103], where all
K plausible data associations are enumerated for a given observation and particle.
Each particle is then cloned K times and the observation is incorporated with the
corresponding data association. Later, the particle set is reduced back to M parti-
cles by the resampling process of the FastSLAM algorithm, described thoroughly in
Chapter 10.

Maximum Likelihood and Gated Nearest Neighbor are the most common data
association techniques employed in SLAM and they suffices to solve the SLAM prob-
lem in not so large indoor environments. On the other hand, outdoor and dynamic
environments demand most robust data association algorithms. For instance, the
Iterative Closest Point has shown significant promise for data association in envi-
ronments with large loops [93]. The application of such algorithms is outside the
scope of this work, but they might improve the accuracy of the resulting map and
allow the applicability in more complex environments.

8.6 Bibliographical and Historical Remarks

The data association problem is widely discussed in the literature, but we recomend the
dissertations [93, 96] of Montermerlo since they are concerned with the SLAM problem.
Furthermore, it proposes the Maximum Likelihood estimation that is part of the FastSLAM
algorithm examined in the present work. In fact, a work of Nieto [103] describes ML as
a real time data association method for FastSLAM. A concise mathematical derivation
might be consulted in [93], but there is more information in the literature of the sibling
Gated Nearest Neighbor method [9].

GNN was originally applied to tracking problems [9], but is has been studied in much
more depth in contemporay texts due to Montemerlo and Thrun [92, 93, 94, 96, 149],
among others. The stochastic mapping derivation given in this chapter is attributed to
Smith [132].

Montemerlo has an updated list of robust data association methods [93]. Tardós et
al. treats the data association problem with sonars in [139], that proposes the Local
Map Sequencing method. A method aimed to deal with multiple observations per control
coined Joint Compatibility Branch and Bound was developed by Neira in [100]. Some texts
addressing this approach are due to Bar-Shalom [9] and Oussalah [105]. This method
traverse the Interpretation Tree of all possible joint correspondences, which is studied by
Grimson in [62, 63]. Later, Bailey presented a similar data association algorithm called
Combined Constraint Data Association in [7].

The Iterative Closest Point algorithm is promising for outdoor environments and closing

large loops. There exist a number of texts [12, 65, 84] that consider the Scan Matching



90 8 Data Association

algorithm based on it. A multiple-hypothesis alternative is due to Reid [117]. It is known

as Multiple Hypothesis Tracking in the target tracking literature. In the case of ambiguous

data association Nebot propose to pause map-building temporary [99]. To some extend,

the per-particle data association of the FastSLAM and Maximum Likelihood combination

is similar in spirit to MHT.



Chapter 9

SLAM

9.1 Introduction

The ability of mapping is one of the core competencies of truly autonomous robots. mapping

For this reason is a very active research topic [93, 136, 147, 148, 149]. Nowa-
days, there are many robust methods for static, structured environments of limited
dimensionality. Mapping dynamic, unstructured and large environments is still an
open problem.

In some measure, current mapping algorithms based on probabilistic techniques
[134]. Some of them operate incrementally as filters and can be used in real time
applications, while others are not because they require to process to whole historic
of data, even several times. To build accurate maps some algorithms need the exact
pose of the robot, which simplifies enormously the problem. In the present work we
focus in the more complex problem of mapping without knowing the actual pose
of the robot. In this case, it is possible to use the robot odometry, but it is very
noise and error prone. Additionally, all mapping algorithm have to deal with the
hard problem of data association. Some algorithms require special landmarks that
can be identified uniquely. This impose modifications in the environment, that are
not generally desirable. In this thesis we will focus in methods that can map the
environment with unknown data association though.

We will introduce mapping first, to later describe the problem of mapping with
unknown robot poses. Such problem is commonly called Simultaneous Localization
And Mapping (SLAM), for reasons discussed then. A brief descriptions of state-
of-the-art SLAM algorithms is given to show the range of solutions and locate the
FastSLAM family of algorithms, that is the point at issue of this document.

9.2 Mapping

The field of cartography or mapping is focused on the study and development of cartography

graphical representations of the environment, typically on a bidimensional surface,
but also in three dimensions. The goal of mapping is to obtain an spatial model of
the environment using measurements retrieved by sensors onboard. Sensors of any
kind are inevitably corrupted by measurement noise, that induce some level of un-
certainty in the knowledge of the landmarks forming the environment. Furthermore,
all sensors have a limited range of view, so the robot must navigate throughout the

91
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environment to construct the map. Robot motion is also corrupted by noise and
thus the controls commanded does not suffice to obtain the robot pose. These lim-
itations make the mapping problem extremely challenging, since it must estimate
both the map and robot poses simultaneously.

Although the earliest maps data back thousands of years BC, it is only in the
last decades when automatic mapping has evolved spectacularly, due to important
advances in Robotics. The main application of a map is navigation in the envi-
ronment. Therefore, it is important to manage adequately the measurement and
motion uncertainty in order to construct accurate maps, suitable for navigation. The
uncertainty is usually managed with probabilistic techniques, that complicate the
mathematical foundations and implementation of mapping algorithms to some ex-
tent. Moreover, the data association problem of pairing measurements with known
landmarks is also highly influenced by the uncertainty induced measurement and
motion noise [93, 147]. Thus, sophisticated methods must be considered, such as
those discussed in Chapter 8.

Acquiring maps with mobile robots is a challenging problem for a number of
reasons. First and foremost, the hypothesis space of all possible maps is huge, since
maps are defined over a continuous space. This high-dimensional space makes it
challenging to calculate the full posteriors over maps. Learning maps is a chicken-
and-egg problem, for which reason it is often referred to as Simultaneous Localiza-simultaneous

localization and
mapping

tion And Mapping (SLAM). There is a localization problem due to the accumulation
of errors in odometry when the robots moves through the environment, which makes
it gradually less certain as to where it is. There is also a mapping problem, that
it is affected by measurement noise and the error in the estimation of the robot
pose, leading to erros in the location of landmarks detected in the environment. In
the absence of both an initial map and exact pose information, the robot has to do
both simultaneously.

The hardness of the mapping problem is the result of a collection of factors,
that according with [149] the most important are:

Size The larger the environment relative to the robot’s perceptual range, the more
difficult it is to acquire a map.

Noise in the perception and actuation The larger the measurement and motion
noise, the more difficult the problem.

Perceptual ambiguity The more frequently different places look alike, the more
difficult it is to solve the data association problem.

Cycles Cycles or loops in the environment are particularly difficult to map. When
closing a loop the accumulated error can be reduced, but before it is closed
it might be huge. Thus, the higher the cycles, the higher the uncertainty of
the map.

The mapping problem under the restrictive assumption that the robot poses are
known is usually called [ mapping!with known poses]mapping with known poses. The
graphical model of this problem can be depicted with the dynamic Bayes network
in Figure 9.1. The poses xt and measurements zt are known, and the goal of
mapping is to recover the map m. Under this assumption the problem is quite
straightforward and it usually solved with a family of algorithms callectively called
occupancy grid mapping . They address the problem of generating consistent mapsoccupancy grid mapping
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xt−1 xt xt+1

zt−1 zt zt+1

m

Figure 9.1: Bayes network of Mapping with known poses

from noisy and uncertain measurement data, given the robot pose. The main utility
of the occupancy grid technique is in post-processing, since many of the SLAM
algorithms do not generate maps fit for path planning and navigation. Occupancy
grid maps are often used after solving the SLAM problem by some other means,
and taking the resulting path estimates for granted.

Finally, note that mapping usually takes place in conjunction with other tasks
that might complicate the process even more, such as exploration. Exploration
is a planning problem that establishes where the robot must go to maximize its
knowledge about the external world, and possibly other aspects —e.g. time, energy
consumption, etc. It is common to construct the map while the robot is exploring.
In such a case, it is mandatory to perform mapping in real time, so not all mapping
algorithms are applicable.

9.2.1 Map Representation

Since the 1980s, mapping research has been divided in two approaches. Those who
construct metric maps that represent the geometric features of the environment, metric maps

and the supporters of topologic maps, which describe the connectivity between topologic maps

different places in the environment. One of the first metric approaches was the
occupancy grid algorithms of Elfes and Moravec [47, 48, 97], which are explained
in the next section. Topologic maps represent the environment by means of list
of representative places interconnected through arcs in a graph. Such arcs are
typically annotated with information that specify how to navigate from one place
to another. Examples of topologic map are due to Mataŕıc [89], Kuipers [79] and
most contemporary works [13, 14, 49].

Nevertheless, the difference between topologic and metric maps is somewhat
diffuse, since topologic maps actually rely on geometric information. In practice,
metric maps provides fine-grain information if compared with topologic maps. Al-
though this comes at some computational cost, it helps solve the complex problem
of data association discussed in Chapter 8. In the literature, we find works that
combine both approaches [74].

Maps might also be classify according with the frame of reference. As shown in
Figure 9.2, we distinguish between maps centered in the world and maps centered
in the robot. The former use a global frame and therefore there is no information
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Map

Information

MetricTopological

Frame

WorldRobot

Figure 9.2: Map Classification according with the frame and information represented
in the map

about the original measurementes, contrary to the later approach. In the present,
most authors use maps are centered in the world, that is, they use a global frame.

Most of the mapping algorithms assume the environment is static, so they are
not capable of manage dynamic phenomena. There exist some modifications that
allow some basic types of changes in the environment, such as the state of the door
—i.e. close or open. However, this is a problem that has been explored poorly and
there is no formal approach to deal with it.

9.2.2 Occupancy Grid Maps

The occupancy grid map is credited to Elfes and Moravec [47, 48, 97]. It calculatesoccupancy grid map

the posterior over maps given the measurements zt and poses xt up to time t

p(m | zt, xt) (9.1)

The control ut play no role, since the path is already known.
The types of maps considered by occupancy grid maps are fine-grained grids

defined over the continuous space of locations. The most common domain of
occupancy grid maps are 2-D floor plan maps, as the one shown in Figure 9.3,
which are the representation of choice when a robot navigates on a flat surface.

Let mi denote the grid cell with index i. An occupancy grid map partitions the
space into finitely many grid cells

m = {mi} (9.2)

where each mi has attached to it a binary occupancy value that specifies whether
a cell is occupied or free.

The standard occupancy grid approach breaks down the problem of estimating
the map into a collection of separate problems, namely that of estimating

p(mi | zt, xt) (9.3)

for all grid cell mi. Each of these estimation problems is a binary problem with
static state. The posterior over maps is approximated as the product of its marginal
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Figure 9.3: Occupancy grid map. Interior of the Intel Research Lab in Seattle

p(m | zt, xt) =
∏
i

p(mi | zt, xt) (9.4)

This problem can be solved with the binary Bayes filter. As the original filter, the
occupancy grid mapping algorithm uses the log odds representation of occupancy. log odds

The advantage of the log odds over the probability representation is that we can
avoid numerical instabilities for probabilities near to zero or one. Anyway, the
probabilities are easily recovered from the log odds ratio. Thus, occupancy grid
maps are probabilistic maps, which generate consistent metric maps from nosiy
measurement data zt. They are often used to represent the resulting map obtained
with SLAM algorithms, since they provide a metric representation that can be of
direct use for navigation and planning. The reader interested in the mathematical
and implementation details might is encourage to consult [149].

9.2.3 Feature-based Maps

There exist a number of mapping algorithms that build maps composed of geometric
elements or objects, such as points, lines, doors, walls, etc. The first approximation
is attributed to Chatila and Laumond [28]. They propose to represent maps as
a collection of lines instead of an occupancy grid, as in Figure 9.4, where the
environment is represented with lines. Since then, some approaches have considered
maps composed of objects present in the environment. Feature-based maps have feature-based maps

some important advantages over occupancy grid maps:

1. The maps is more compact, particularly in structured environments.



96 9 SLAM

2. Depending on the environments they are more accurate.

3. It is possible to represent dynamic environments

4. Feature-based maps are conceptually easier to understand, since they repre-
sent elements of high semantic level. For this reason, they facilitates human-
robot interaction.

Figure 9.4: Feature-based map. Map that represent the environment with line
features in blue ( ). Interior of the Intel Research Lab in Seattle

The major drawback of feature-based maps is that of the assumption that the
environment can be represented with a particular set of features. For this reason,
the kind of features used depends significantly of the environment that the robot
is mapping. In fact, the environment must be such that it can be represented by
simple geometric shapes or objects.

9.3 The SLAM problem

It was in the 1990s when mapping embrace probabilistic techniques, following a
probabilistic framework introduced by Smith, Self and Cheeseman [132, 133, 134]
in a series of papers that develop an approach to solve the mapping and localization
problem simultaneously. They identified the relationship between localization and
mapping and since then the problem is known as Simultaneous Localization And
Mapping (SLAM).

If the path of the robot were known, then mapping would be a straightforward
problem. The positions of landmarks in the environment could be estimated using
independent filters. However, when the path of the robot is unknown, errors in the
robot path correlates error in the map. As a result, the state of the robot pose and
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the locations of the landmarks in the map must be estimated simultaneously, hence
the SLAM problem.

The most popular online solutions to the SLAM problem attempt to estimate
the posterior probability distribution over all possible maps Θ and robot poses xt
conditioned on the full set of control ut and measurements zt at time t. Using this
notation, the joint posterior distribution over maps and robot poses can be written
as

p(xt,Θ | zt, ut) (9.5)

This distribution is referred to as the SLAM posterior and it allows to solve the
online SLAM problem, since it can operate as a filter, in real time.

In the probabilistic formulation of SLAM, the map Θ consists on a collection of
landmarks θi for i = 1, . . . , N , where N is the number of landmarks in the map.
The pose xt consists on the robot location (x y) and its angular orientation θ. The
complete trajectory of the robot, consisting of the robot pose at every time step up
to t is denoted xt. If we compute the posterior over maps and robot paths

p(xt,Θ | zt, ut) (9.6)

we are solving the full SLAM problem, that is the problem of obtaining the map
and the whole set of robot poses, not only the last one.

The robot perceives the environment with measurement sensors. A measurement
at time t is denoted zt. Without loss of generality, we assume the observation of a
single landmark θt in the map per measurement zt, whose association is identified by
nt. The process that models the acquisition of a measurement is the measurement
model

p(zt | xt, θnt , nt) = g(θnt , xt) + εt (9.7)

The generative measurement model is conditioned by the robot pose xt, the identity
nt of the landmarks θnt detected and the landmark itself. The model is governed
by a deterministic function g with added Gaussian noise εt with mean zero and
covariance Rt, which is a common and appropiate assumption [92, 147, 149].

A second source of information to solve the SLAM problem are the controls ut
executed by the robot throughout the time interval [t− 1, t). The evolution of the
robot pose is governed by the motion model

p(xt | xt−1, ut) = h(xt−1, ut) + δt (9.8)

The pose xt at time t is given by a deterministic function h, that depends on the
previous pose xt−1 and the controls commanded ut, with added Gaussian noise δt
with mean zero and covariance Pt. Habitually, the functions g and h are highly
nonlinear.

Most contemporary SLAM algorithms based on Bayes filters that compute re-
cursively the probability distribution of the map Θ and robot pose xt from the prior
distribution

p(xt,Θ | zt, ut, nt) =ηp(zt | xt,Θ, nt)∫
p(xt | xt−1, ut) p(xt−1,Θ | zt−1, ut−1, nt−1) dxt−1

(9.9)

Here η is a normalizer factor that does not depends on the distributions —in fact,
η = p(zt | zt−1, ut, nt). If the functions g and h are linear, this approach is
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equivalent to the Kalman filter. Otherwise, the Extended Kalman filter approximate
g and h applying Taylor expansion. The FastSLAM algorithm factors the filter to
compute it as a product of smaller and simpler terms. These and other SLAM
algorithms are described in brief in the following section.

9.4 SLAM algorithms

The following sections enumerate a number of classical and different approaches to
solve the SLAM problem. We describe solutions that based on techniques radically
different to illustrate the great effort of research that this topic has attracted and
the variety of perspectives to attack it [93, 149].

9.4.1 EKF SLAM

Many of the original SLAM algorithms originate from a seminal paper by Smith and
Cheeseman [132, 133, 134], which proposed the use of the Extended Kalman Filter
(EKF) to estimate the SLAM posterior. The EKF represents the SLAM posterior
as a high-dimensional, multivariate Gaussian parametrized by a mean µt and a
covariance matrix Σt. The mean describes the most likely stat of the robot and
landmarks, while the covariance matrix encodes the pairwise correlations between
all pairs of state variables.

The number of parameters to describe the EKF posterior is quadratic in the num-
ber of landmarks N in the map. In the EKF SLAM the motion and measurementsekf slam

are linearized around the most-likely state of the system, which is generally a good
approximation. EKF-based SLAM has two substantial drawbacks: the quadratic
complexity in the number of landmarks N and the sensitivity to failures in data
association. There exist a number of powerful variants of the EKF SLAM algorithm
that mitigate such limitations, such as Divide & Conquer (D&C) SLAM [110].

9.4.2 Expectation Maximization

The Expectation Maximization (EM) algorithm is a stochastic approach developedexpectation
maximization by Dempster, Laird and Rubin [39]. Currently, it is one of the best solutions to the

data association problem. EM algorithms are capable of mapping large and cyclic
environments consistently, even if landmarks are similar and cannot be distinguished
with the measurement data only.

However, EM does not retain a complete notion of the uncertainty, since it
applies an heuristic search of the kind of hill climbing or gradient descent in the
space of all maps to find the most likely one. It does not solve the online SLAM
problem because it has to process the available data the several times.

9.4.3 Submap Methods

A great deal of SLAM research has concentrated on developing SLAM algorithms
that approximate the performance of the EKF, but scale to much larger environ-
ments. The computational complexity of the EKF is due to the fact that the
covariance matrix Σt represents every pairwise correlation between the state vari-
ables. Nonetheless, the observation of a single landmark will have a weak effect
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on the positions of distant landmarks. For this reason, many researchers have de-
veloped EKF-based SLAM algorithms that decompose the global map into smaller
submaps [93]. Postponement [36, 64] and the Compressed Extended Kalman Filter submaps

(CEKF) [64] are both techniques that delay the incorporation of local information
into the global map while the robot stays inside a single submap. The D&C SLAM
algorithm commented in Section 9.4.1 is actually a submap SLAM method too.

9.4.4 SEIF SLAM

Another filter approach to decomposing the SLAM problem is to represent maps us-
ing potential functions between nearby landmarks. One such approach is the Sparse sparse extended

information filterExtended Information Filter (SEIF) proposed in [150], which uses the Information
Filter instead of the Kalman Filter parametrization. Thus, SEIF update the precision
matrix Σ−1. This parametrization is useful because the precision matrix is sparse
if correlations are maintained only between nearby landmarks. Under appropiate
approximations, this technique has been shown to provide efficient updates with a
linear memory requirement [93].

9.4.5 GraphSLAM

The posterior of the full SLAM problem naturally forms a sparse graph. This graph
leads to a sum of nonlinear quadratic constraints. Optimizing these constraints
yields a Maximum Likelihood map and a corresponding set of robot poses. The
GraphSLAM algorithm compute the map posterior linearizing the set of constraints graphslam

to produce an sparse information matrix and later apply standard inference tech-
niques [149].

GraphSLAM represents the information as a graph of soft constraints. It can
acquire maps that are many orders of magnitude larger than EKF SLAM can handle,
and they are superior in accuracy. GraphSLAM has also some limitations: the size
of the graph grows linearly over time., it calculates posteriors over robot paths,
hence is not an incremental algorithm, and it requires inference to compute data
association probabilities. Thus, to some extent, GraphSLAM compared to EKF
SLAM are extreme ends of the spectrum of SLAM [149].

9.4.6 Thin Junction Tree Filter

The Thin Junction Tree Filter (TJTF) of Paskin [108] is a SLAM algorithm based thin junction tree
filteron the same principle as the SEIF. It maintains a sparse network of probabilistic

constraints between state variables, which enables efficient inference. The SLAM
posterior is represented with a graphical model called Junction Tree. The size of
this tree grows as new landmarks are incorporated to the map, but it can be thinned
using an operations called variable contraction. TJTF has the advantage over SEIF
that global maps can be extracted without any matrix inversion. This algorithm
requires linear computation, which can be reduced to constant time with further
approximation [93].

9.4.7 Covariance Intersection

Julier and Uhlmann present an alternative to maintaining the complete joint covari-
ance matrix called Covariance Intersection [72]. It updates the landmark position covariance intersection
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variances conservatively, in such a way that allows for all possible correlations be-
tween the observation and the landmark. The resulting algorithms requires linear
time and memory. The drawback of this approach is that it tends to be extremely
conservative, leading to notably slow convergence and highly ambiguous data asso-
ciation.

9.4.8 Graphical Optimization Methods

Commonly, offline SLAM algorithms treats the SLAM as an optimization problem.
These methos exploits the fact that the set of constraints between different variables
in the SLAM posterior can be represented by a set of sparse links, given all past
poses. Optimization techniques leads to a most likely map and robot path. The
earliest work on this paradigm is credited to Lu and Milios [83], but were Folkesson
and Christensen who introduced the term Graphical SLAM into the literature [52],graphical slam

for a related graphical relaxation method. Graphical optimization methods are also
discussed in [149], which are related with the Structure From Motion literature
[153], since they are usually offline.

9.4.9 Hybrid Methods

There exist a number of hybrid algorithms that try to solve the SLAM problem.
They are hybrid in the sense that they combine different approaches. Most of them
integrate probabilistic computations with Maximum Likelihood estimators, which
are much more efficient computationally. One of this approaches is the FastSLAMfastslam

algorithm [93, 94] discussed in this work, since it uses Extended Kalman filters to
estimate landmarks locations in the map, a particle filter to estimate the robot path
and Maximum Likelihood estimation to solve the data association problem. Doing
so, it is capable to manage large environment in real time.

FastSLAM Algorithms

The FastSLAM family of algorithms uses particle filters to solve the SLAM problem,
in such a way that motion uncertainty is approximated with several hypotheses, one
for each possible robot path. Each path generates its own map, where each land-
mark is estimated using Extended Kalman filters. This approach is computationally
efficient and it allows to obtain maps with unprecedented large dimensionality and
accuracy. In fact, FastSLAM has a O (logN) computational cost, where n is the
number of landmarks. Therefore, the algorithm scales efficiently to large maps and
is robust to significant ambiguity in data association, since it manages multiple
hypotheses to estimate the robot pose and data associations.

One of the major drawbacks of FastSLAM is the underestimation of the uncer-
tainty, that might lead to incorrect data association, specially when closing loops.
The original version FastSLAM 1.0 suffers this and other problems, that a later
version coined FastSLAM 2.0 addresses. There exist also a version that does not
rely on features. Called Grid-based FastSLAM [93, 149], it estimates an occupancygrid-based fastslam

grid map instead of a set of landmarks. In Chapter 10, the FastSLAM algorithm
is described with further detail, since it is the SLAM algorithm used in the present
work.
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9.5 Discussion

The SLAM algorithms described above are shown in Figure 9.5, where the FastSLAM
algorithm appears classified as an hybrid methods because it is approach we have
selected to solve the SLAM problem in this thesis. All SLAM algorithms have their
pros and cons. In the present work we intend to solve the online SLAM problem,
that is, we need an approach feasible to operate in real time.

SLAM
Methods

EKF SLAM

SEIF SLAM

Submap
Methods

TJTF
Covariance
Interception

EM

Graphical
SLAM

GraphSLAM

Hybrid
Methods

FastSLAM

Figure 9.5: SLAM Methods

We have introduced some SLAM methods suitable for real time, that generate
maps with sufficient accuracy. Although any option might be as valid as the others,
we have adopted FastSLAM because it is very robust and efficient, produces accurate
maps, and it is relatively easy to implement if compared with other methods.





Chapter 10

FastSLAM

10.1 Introduction

In this chapter we describe the basic FastSLAM algorithm, an alternative approach
to SLAM that is based on particle filtering [93]. The algorithm is based on an
important characteristic of the SLAM problem. The full SLAM problem with known
correspondences ct possesses a contional independence between any two disjoint sets
of landmarks given the robot pose. Therefore, we can estimate the location of all
landmarks independently of each other given the true robot path. This structural
observation makes it possible to apply a verion of particle filters to SLAM known
as Rao-Blackwellized Particle filter , which uses particles to represent the posterior rao-blackwellized

particle filterover some variables, along with Gaussians to represent all other variables [149].

Particularly, FastSLAM uses particle filters for estimating the robot path. For
each of these particles the individual map landmarks are conditionally independent.
Hence the mapping problem can be factored into many separate problems, one for
each landmark, whose location is estimated by low-dimensional EKFs in FastSLAM.
The basic algorithm can be implemented in time logarithmic O (logN) in the num-
ber of landmarks N . There exist two versions of FastSLAM. FastSLAM 1.0 being
the first version is improved by FastSLAM 2.0, which attempts to solve the limi-
tations of the former. In brief, it incorporates the current observation zt into the
proposal distribution in order to better match the posterior.

The use of particle filters creates the unusual situation that FastSLAM solves
both the full SLAM problem and the online SLAM problem. As we shall see,
FastSLAM is formulated to calculate the full path posterior, since only the full
path renders feature locations conditionally independent. However, because particle
filters estimate one pose at-a-time, FastSLAM is indeed an online algorithm. Hence
it also solve the online SLAM problem. Among all SLAM algorithms discussed thus
far, FastSLAM is the only algorithm that fits both categories [149]. Furthermore,
particle filters can cope with non-linear robot motion models, whereas other SLAM
techniques approximate such models via linear functions. This is important when
the kinematics are highly non-linear or when the pose uncertainty is relatively high.

This chapter describes several instantiations of the FastSLAM algorithm as they
are described in [93, 149]. A version for known data association is presented first
and it is later extended to the most general case of unknown data association. The
FastSLAM 1.0 algorithm is described, along with some extensions and implementa-
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tion concerns. The modified version FastSLAM 2.0 is later discussed.

10.2 The Basic Algorithm

In the basic FastSLAM algorithm each particle contains an estimated robot pose

x
[k]
t , and a set of Extended Kalman filters with mean µ

[k]
j,t and covariance Σ[k]

j,t, one
for each landmark θj in the map Θ. Here [k] denotes the index of the particle. As
usual, the total number of particles is M . The update step consists on repeating
M times the following steps:

Retrieval Retrieve a pose x
[k]
t−1 from the particle set Yt−1.

Prediction Sample a new pose x
[k]
t ∼ p(xt | x

[k]
t−1, ut).

Measurement update For each observed feature zit identify the correspondence
cj with a landmark θj in the map, and incorporate zit into the the EKF by

updating the mean µ
[k]
j,t and covariance Σ[k]

j,t.

Importance weight Calculate the importance weight w[k] for the new particle.

The temporary particle set obtained is then resampled. The final resampling step
consists on sample with replacement M particles, where each particle is sampled
with a probability proportional to w[k]. Barring the many details of the update
step, the algorithm is in large parts identical to the particle filter, as discussed in
Section 4.2. The initial step retrieves a particle representing the posterior at time
t − 1, and samples a robot pose using the probabilistic motion model. Next, the
EKFs for the observed features are updated. The final steps are concerned with the
calculation of an importance weight, which are then used ro resample the particles.

We will now discuss these steps in more details, while the derivation of them is up
to the reader decision to be consulted in [93, 94, 149]. Our discussion presupposes
that FastSLAM solves the full SLAM problem, not the online problem. However,
FastSLAM is a solution to both of these problems, since each particle can be thought
of as a sample in path space as required for the full SLAM problem, but the update
only requires the most recent pose. For this reason, FastSLAM can be run just like
a filter, suitable for real time.

10.3 Factoring the SLAM Posterior

The majority of SLAM approaches are based on estimating the posterior over maps
Θ and robot pose xt

p(xt,Θ | zt, ut, ct) (10.1)

Contrary, FastSLAM computes the posterior over maps Θ and robot paths xt

p(xt,Θ | zt, ut, ct) (10.2)

This subtle difference allows to factor the SLAM posterior into a product of simpler
terms

p(xt,Θ | zt, ut, ct) = p(xt | zt, ut, ct)︸ ︷︷ ︸
path posterior

N∏
n=1

p(θn | xt, zt, ut, ct)︸ ︷︷ ︸
landmark estimators

(10.3)
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This factorization, first developed by Murphy [98], states that the SLAM pos-
terior can be separated into a product of a robot path posterior p(xt | zt, ut, ct)
and N landmark posteriors p(θn | xt, zt, ut, ct) conditioned on the robot’s path. It
is important to note that this factorization is exact, since if follows directly from
the structure of the SLAM problem [93]. There exist filtering techniques that can
computed the path posterior as efficiently as the pose posterior, due to the path
posterior factorization obtained [94].

xt−1 xt xt+1 xt+2

ut−1 ut ut+1 ut+2

zt−1 zt zt+1 zt+2

θ1 θ2 θ3

Figure 10.1: SLAM Bayes Network that characterizes the evolution of states xt ,

controls ut , measurements zt and associated landmarks θi

To illustrate the correctness of this factorization, Figure 10.1 shows the data
acquisition process graphically, in the form of a Dynamic Bayes Network (DBN).
As the graph suggests, each measurement z1, . . . , zn is a function of the position
of the corresponding landmark θi, along with the robot pose xt at the time t the
measurement zt was taken. Knowledge of the robot path separates the individual
landmark estimation problems and renders them independen of one another, in the
sense that no direct path exists in this graphical depiction from one landmark to
another that would not involve variables on the robot’s path. Therefore, knowledge
of the exact location of one landmark θi will tell us nothing about the locations
of other features θj 6=i, if the robot path is known. This implies that landmarks
are conditionally independent given the robot path as stated in (10.3). The reader
might consult the mathematical proof of the factored SLAM posterior in [93, 149].

10.4 FastSLAM with Known Data Association

We begin considering that the correspondences ct are known and so is the number
of landmarks N observed thus far. This assumption states that the unique corre-
spondence between a measurement zt and a landmark θt is available. The data
association problem is therefore assumed already solved. Such assumption is rarely
the case in practice, but it let us introduce the FastSLAM algorithm clearly.
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FastSLAM estimates the path posterior p(xt | zt, ut, ct) using a modified particle
filter. The landmark locations are estimated using EKFs. Therefore, FastSLAM
exploits the factored representation of (10.3) by maintaining MN + 1 filters. By
doing so, all MN + 1 filters are low-dimensional and each update of the filter
demands a constant computational cost, regardless the path length. It also allows
to manage nonlinear motion models. Each individual EKF is conditioned on a robot
path with each particle possessing its own set of N EKFs, and hence each EKF is
low-dimensional. In total there are NM EKFs, one for each of the N landmarks
in the map and one for each of the M particles of the particle filter. Particles in
FastSLAM will be denoted

Y [k]
t =

〈
x

[k]
t ,
〈
µ

[k]
1,t,Σ

[k]
1,t

〉
, . . . ,

〈
µ

[k]

N
[k]
t ,t

,Σ[k]

N
[k]
t ,t

〉〉
(10.4)

The bracketed notation [k] indicates the index of the particle, x
[k]
t is the path

estimate of the robot, and µ
[k]
j,t,Σ

[k]
j,t are the mean and covariance of the Gaussian

representing the j-th landmark location conditioned on the path xt,[k]. Together all

of these quantities form the k-th particle Y [k]
t , of which there are a total of M in

the FastSLAM posterior.
Filtering, i.e. calculating th posterior at time t from the one at time t − 1,

involves generating a new particle Yt from Yt−1. The new particle set incorporates
the latest control ut and measurement zt with its corresponding data association
ct. This update is performed in the following steps:

1. Extending the path posterior by sampling new poses. FastSLAM sam-
ples the pose xt in accordance with each k-th particle by drawing a sample
according to the motion posterior

x
[k]
t ∼ p(xt | x

[k]
t−1, ut) (10.5)

Here x
[k]
t is the posterior estimate for the robot pose at time t−1, residing in

the k-th particle. This process is applied to all particles to obtain a temporary
set of particles.

2. Updating the observed landmark estimate. Next, FastSLAM updates the

posterior over the landmark estimates, represented by the mean µ
[k]
j,t−1 and

the covariance Σ[k]
j,t−1 for each of the j = 1, . . . , N [k]

t−1 landmarks of the k-th
particle. The updated values are then added to the temporary particle set,
along with the new pose.

The exact update equation depends on whether or not a landmark θj was
observed at time t. For j 6= ct we did not observe landmark θj and it remains
unchanged. For the observed landmark j = ct, the update is specified through
the expansion of the posterior using Bayes Rule

p(θct | xt, zt, ct) = ηp(zt | xt, θct , ct)p(θct | xt−1, zt−1, ct−1) (10.6)

If the observation does not correspond to any of the landmarks in the map,
a new one is incorporated to the map.

FastSLAM implements the update equation (10.6) using an EKF. As in EKF
solutions to SLAM, this filter uses a linear Gaussian approximation for the
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measurement model. As usual, we approximate the measurement function h
by Taylor expansion. Under this approximation, the posterior for the loca-
tion of landmark θct is indeed Gaussian. The new mean and covariance are
obteined using the standard EKF measurement update

Qct,t = H
[k]
t Σ[k]

ct,t−1H
[k]T
t +Qt (10.7)

K
[k]
t = Σ[k]

ct,t−1H
[k]T
t Q−1

ct,t (10.8)

µ
[k]
ct,t = µ

[k]
ct,t−1 +K

[k]
t (zt − ẑ[k]

t ) (10.9)

Σ[k]
ct,t = (I −K [k]

t H
[k]
t )Σ[k]

ct,t−1 (10.10)

Steps 1 and 2 are repeated M times, resulting in a temporary set of M
particles.

3. Resampling. In a final step, FastSLAM resamples this set of particles. It
draws from its temporary set M particles with replacement according to an
importance weight. The resulting set of M particles then forms the new and
final particle set Yt. The necessity to resample arises from the fact that the
particles in the temporary set are not distributed according to the desired
posterior, since step 1 generates poses xt only in accordance with the most
recent control ut, paying no attention to the measurement zt. Resampling
is the common technique in particle filtering to correct for such mismatches
and avoid the filter degeneration [5, 41, 42, 43].

By weighting particles and resampling according to those weights, the re-
sulting particle set approximates the target distribution. To determine the
importance factor , it will prove usefult to calculate the actual proposal dis- importance factor

tribution of the path particles in the temporary set. Path particles in the
temporary set are distributed according to

p(xt,[k] | zt−1, ut, ct−1) = p(x[k]
t | x

[k]
t−1, ut)p(x

t−1,[k] | zt−1, ut−1, ct−1)
(10.11)

where the factor p(x[k]
t | x

[k]
t−1, ut) is the sampling distribution used in (10.5).

The target distribution takes into account the measurement zt, along with
the correspondence ct

p(xt,[k] | zt, ut, ct) (10.12)

The resampling process accounts for the difference of the target and the
proposal distribution. The importance factor for resampling is given by the
quotient of the target and the proposal distribution

ω
[k]
t =

target distribution

proposal distribution

=
p(xt,[k] | zt, ut, ct)

p(xt,[k] | zt−1, ut, ct−1)

= ηp(zt | x[k]
t , ct)

(10.13)

The last transformation is a direct consequence of the following transformation
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of the numerator in (10.13), i.e. the target distribution

p(xt,[k] | zt, ut, ct) Bayes∝ ηp(zt | xt,[k], zt−1, ut, ct)p(xt,[k] | zt−1, ut, ct)
Markov= ηp(zt | x[k]

t , ct)p(x
t,[k] | zt−1, ut, ct−1)

(10.14)

The landmark estimator is an EKF, so this observation likelihood can be
computed in closed form. The probability of the observation zt is equal to
the probability of the innovation zt − ẑt being generated by a Gaussian with
zero mean and covariance Qct,t, that is the innovation covariance matrix
defined in (10.7), which can be written as

ω
[k]
t ≈ η

∣∣2πQct,t∣∣−1
2 exp

{
−1

2
(zt − ẑ[k]

t )TQ−1
ct,t(zt − ẑ

[k]
t )
}

(10.15)

These three steps together constitute the update rule of the FastSLAM 1.0
algorithm for SLAM problems with known data association. We note that the
execution time of the update does not depend on the total path length t. In fact,

only the most recent pose x
[k]
t−1 is used in the process of generating a new particle

at time t. Consequently, past poses can safely be discarded. Therefore, neither the
time requirements nor the memory requirements of FastSLAM depend on t.

A summary of the FastSLAM 1.0 algorithm with known data association is
provided in Algorithm 19. For simplicity, this implementation assumes that only a
single feature is measured at each point in time. The algorithm implements the
various update steps in a straighforward manner.

10.5 Unknown Data Association

This sections extendes FastSLAM algorithms to cases where the correspondences ct

are unknown. A key advantage of using particle filters for SLAM is that each particle
can rely on its own, local data association decisions [149]. The reader might recall
that the data association problem consists on determining the correspondences ct

at time t based on the available data, which is thoroughly discussed in Chapter 8.
So far, we described a number of data association techniques using arguments
such as maximum likelihood. Most of those techniques provided a single data
association per measurement, for the entire filter. FastSLAM, by virtue of using
multiple particles, can determine the correspondence on a per-particle basis, already
introduced in Section 8.5. Thus, the filter not only samples over robot paths, but
also over possible data association decisions along the way.

FastSLAM uses the Maximum Likelihood data association technique discussed

in Section 8.3. With ML each data association ĉ
[k]
t is determined by maximizing

the likelihood of the measurement zt

ĉ
[k]
t = arg max

ct

p(zt | ct, ĉt−1,[k], xt,[k], zt−1, ut) (10.16)

ML makes it possible to estimate the number of landmarks in the map. It creates
new landmarks if the likelihood falls below a threshold p0 for all known landmarks
in the map.
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Algorithm 19 FastSLAM1.0 with known correspondence

Require: Observation or measurement zt, correspondence ct, control ut and the
set of M particles Yt−1 obtained in the previous temporal step.
Motion model to sample new pose xt ∼ p(xt | xt−1, ut).
A measurement prediction function h(µt−1, xt), its Jacobian h′(µt−1, xt), in-
verse function h−1(zt, xt) and the model noise Qt.
The importance factor p0 used for new landmarks.
A resampling method to draw M particles with probability ∝

k=1,...,M
w[k].

Ensure: Set of M particles Yt obtained applying FastSLAM 1.0 algorithm.
Algorithm: FastSLAM1.0KC(zt, ct, ut, Yt−1) return Yt

1: for k = 1 to M do . loop over all particles

2: retrieve

〈
x

[k]
t−1, N

[k]
t−1,

〈
µ

[k]
1,t−1,Σ

[k]
1,t−1

〉
, . . . ,〈

µ
[k]

N
[k]
t−1,t−1

,Σ[k]

N
[k]
t−1,t−1

〉〉
from Yt−1

3: x
[k]
t ∼ p(xt | x

[k]
t−1, ut) . sample new pose

4: N
[k]
t = max

{
N

[k]
t−1, ct

}
. new number of landmarks in map

5: if landmark ct never seen before then
6: µ

[k]
ct,t = h−1(zt, x

[k]
t ) . initialize mean

7: H = h′(µ[k]
ct,t, x

[k]
t ) . calculate Jacobian

8: Σ[k]
ct,t = (H−1)TQtH−1 . initialize covariance

9: w[k] = p0 . default importance weight
10: else
11: ẑ = h(µ[k]

ct,t−1, x
[k]
t ) . measurement prediction

12: H = h′(µ[k]
ct,t−1, x

[k]
t ) . calculate Jacobian

13: Q = HΣ[k]
ct,t−1H

T +Qt . measurement covariance

14: K = Σ[k]
ct,t−1H

TQ−1 . calculate Kalman gain

15: µ
[k]
ct,t = µ

[k]
ct,t−1 +K(zt − ẑ) . update mean

16: Σ[k]
ct,t = (I −KH)Σ[k]

ct,t−1 . update covariance

17: w[k] =
∣∣2πQ∣∣−1

2 exp
{
−1

2
(zt − ẑ)TQ−1(zt − ẑ)

}
. importance wt.

18: end if
19: ∀

j 6=ct

〈
µ

[k]
j,t,Σ

[k]
j,t

〉
=
〈
µ

[k]
j,t−1,Σ

[k]
j,t−1

〉
. unobserved landmarks left unchanged

20: end for

21: Yt ← ∅ . initialize new particle set
22: for M times do . resample M particles
23: draw random k from Ŷt with probability ∝ w[k] . resample

24: add

〈
x

[k]
t , N

[k]
t ,
〈
µ

[k]
1,t,Σ

[k]
1,t

〉
, . . . ,

〈
µ

[k]

N
[k]
t ,t

,Σ[k]

N
[k]
t ,t

〉〉
to Yt

25: end for
26: return Yt
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The likelihood is calculated as follows

p(zt | ct, ĉt−1,[k], xt,[k], zt−1, ut)

=
∫
p(zt | θct , ct, ĉt−1,[k], xt,[k], zt−1, ut)p(θct | ct, ĉt−1,[k], xt,[k], zt−1, ut)dθct

=
∫
p(zt | θct , ct, x

[k]
t )︸ ︷︷ ︸

∼N (zt; h(θct ,Qt))

p(θct | ĉt−1,[k], xt−1,[k], zt−1)︸ ︷︷ ︸
∼N (µ

[k]
ct,t−1,Σ

[k]
ct,t−1)

dθct

(10.17)

The linearization of the measurement model function h enables us to obtain this
in closed form

p(zt | ct, ĉt−1,[k], xt,[k], zt−1, ut)

=
∣∣2πQ[k]

ct,t

∣∣−1
2 exp

{
−1

2
(zt − ẑj)TQ[k]−1

ct,t (zt − ẑj)
} (10.18)

where ẑj = h(µ[k]
ct,t−1, x

[k]
t ) is the estimated measurement and Q

[k]
ct,t was defined in

(10.7) as a function of the data association ct.
The steps of the FastSLAM algorithm with unknown data association are fairly

the same with the new data association step discussed above:

1. Extending the path posterior by sampling new poses.

2. Obtain data association.

3. Updating the observed landmark estimate.

4. Resampling.

10.6 The FastSLAM Algorithms

The Algorithm 20 and 21 summurizes the FastSLAM 1.0 algorithm with unknown
data association. Particles are of the form

Y [k]
t =

〈
x

[k]
t , N

[k]
t ,
〈
µ

[k]
1,t,Σ

[k]
1,t, i

[k]
1,t

〉
, . . . ,

〈
µ

[k]

N
[k]
t ,t

,Σ[k]

N
[k]
t ,t

, i
[k]

N
[k]
t ,t

〉〉
(10.19)

In addition to the pose x
[k]
t and the landmark estimates µ

[k]
j,t and Σ[k]

j,t for j =

1, . . . , N [k]
t , each particle k contains the number of landmarks N

[k]
t in its local map,

and each landmark carries a probabilistic estimate of its existence i
[k]
j,t, which is

actually a counter.
Iterating the filter requires time linear O (N) in the maximum number of land-

marks max
k=1,...,M

N
[k]
t in each map, and it is also linear O (M) in the number of

particles M . In sum, FastSLAM performs with O (MN) if implemented naively,
but it is possible to achieve O (M logN) is implemented efficiently. For the reader
interested, [93] is concerned with several aspects that must be considered in order
to implement FastSLAM efficiently.
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Algorithm 20 FastSLAM1.0 (Part I)

Require: Observation or measurement zt, control ut and the set of M particles
Yt−1 obtained in the previous temporal step.
Motion model to sample new pose xt ∼ p(xt | xt−1, ut).
A measurement prediction function h(µt−1, xt), its Jacobian h′(µt−1, xt), in-
verse function h−1(zt, xt) and the model noise Qt.
The importance factor p0 used for new landmarks.
A resampling method to draw M particles with probability ∝

k=1,...,M
w[k].

Ensure: Set of M particles Yt obtained applying FastSLAM 1.0 algorithm.
Algorithm: FastSLAM1.0(zt, ut, Yt−1) return Yt

1: for k = 1 to M do . loop over all particles

2: retrieve

〈
x

[k]
t−1, N

[k]
t−1,

〈
µ

[k]
1,t−1,Σ

[k]
1,t−1, i

[k]
1,t−1

〉
, . . . ,〈

µ
[k]

N
[k]
t−1,t−1

,Σ[k]

N
[k]
t−1,t−1

, i
[k]

N
[k]
t−1,t−1

〉〉
from Yt−1

3: x
[k]
t ∼ p(xt | x

[k]
t−1, ut) . sample new pose

4: for j = 1 to N
[k]
t−1 do . measurement likelihoods

5: ẑj = h(µ[k]
j,t−1, x

[k]
t ) . measurement prediction

6: Hj = h′(µ[k]
j,t−1, x

[k]
t ) . calculate Jacobian

7: Qj = HjΣ
[k]
j,t−1H

T
j +Qt . measurement covariance

8: wj =
∣∣2πQj∣∣−1

2

exp
{
−1

2
(zt − ẑj)TQ−1

j (zt − ẑj)
}

. likelihood correspondence

9: end for

10: w
N

[k]
t−1+1

= p0 . importance factor, new landmark

11: w[k] = max
j=1,...,Nt−1+1

wj . max likelihood correspondence

12: ĉ = arg max
j=1,...,Nt−1+1

wj . index of ML landmark

13: N
[k]
t = max

{
N

[k]
t−1, ĉ

}
. new number of landmarks in map

14: for j = 1 to N
[k]
t do . update Kalman filters

15: if j = ĉ = N
[k]
t−1 + 1 then . is new landmark?

16: µ
[k]
j,t = h−1(zt, x

[k]
t ) . initialize mean

17: Hj = h′(µ[k]
j,t, x

[k]
t ) . calculate Jacobian

18: Σ[k]
j,t = (H−1

j )TQtH−1
j . initialize covariance

19: i
[k]
j,t = 1 . initialize counter

. see next page for continuation

The algorithm described here considers a single measurement at a time. This
choice is made for notational convenience only. Multiple readings can be incorpo-
rated per time step by processing each observation sequentially. The weight for each
particle is equal to the product of the weights due to each observation considered
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. continued from the previous page

20: else if j = ĉ ≤ N [k]
t−1 then . is observed landmark?

21: K = Σ[k]
j,t−1H

T
j Q
−1
ĉ . calculate Kalman gain

22: µ
[k]
j,t = µ

[k]
j,t−1 +K(zt − ẑĉ) . update mean

23: Σ[k]
j,t = (I −KHj)Σ

[k]
j,t−1 . update covariance

24: i
[k]
j,t = i

[k]
j,t−1 + 1 . increment counter

25: else . all other landmarks
26: µ

[k]
j,t = µ

[k]
j,t−1 . copy old mean

27: Σ[k]
j,t = Σ[k]

j,t−1 . copy old covariance

28: if µ
[k]
j,t−1 outside perceptual

range of x
[k]
t then . should landmark have been seen?

29: i
[k]
j,t = i

[k]
j,t−1 . no, do not change

30: else if i
[k]
j,t−1 = 0 then . yes, and null counter?

31: discard landmark j . yes, discard dubious landmarks
32: else
33: i

[k]
j,t = i

[k]
j,t−1 − 1 . no, decrement counter

34: end if
35: end if
36: end for

37: add

〈
x

[k]
t , N

[k]
t ,
〈
µ

[k]
1,t,Σ

[k]
1,t, i

[k]
1,t

〉
, . . . ,

〈
µ

[k]

N
[k]
t ,t

,Σ[k]

N
[k]
t ,t

, i
[k]

N
[k]
t ,t

〉〉
to Ŷt

38: end for

39: Yt ← ∅ . construct new particle set
40: for M times do . resample M particles
41: draw random k from Ŷt with probability ∝ w[k] . resample

42: add

〈
x

[k]
t , N

[k]
t ,
〈
µ

[k]
1,t,Σ

[k]
1,t, i

[k]
1,t

〉
, . . . ,

〈
µ

[k]

N
[k]
t ,t

,Σ[k]

N
[k]
t ,t

, i
[k]

N
[k]
t ,t

〉〉
to Yt

43: end for
44: return Yt

alone. Incorporating multiple observations per time step increase both the accuracy
of data association and the accuracy of the resulting map. Therefore, the actual
implementation takes multiple observation into account per time step. However,
the reader might recall that in this case the data associations of each observation are
clearly correlated and better data association methods must be applied, as discussed
in Chapter 8.
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Results

11.1 Introduction

In this chapter we will test and evaluate the FastSLAM algorithm. Since it is a highly
parametrizable method, we might analyze the influence of the parameters. However,
we consider the results of the study in [38]. Here we will evaluate the algorithm in
similar environments to demonstrate its correctness. Moreover, we have migrate it
to real time scenarios using a mobile robot operating in real environments.

The SLAM problem can be studied in a myriad of environments and under
different conditions. In the present work we concentrated exclusively in static,
structured, indoor environments. We will call them office-like environments. They
are easily described with a set of simple geometric features such as lines and corner
points. In the following section we describe some environments of this kind, that
have been used in the experiments. The metrics shown later allow us to evaluate
the performance of our FastSLAM algorithm implementation quantitatively.

11.2 Experiments

We have used a common robotic differential drive platform called Pioneer P3-DX [2],
developed by MobileRobots —formerly ActiveMedia. The motion models discussed
in Chapter 5 are directly applicable to this kind of robots moving in a plane.

The range laser sensor employed is the SICK LMS-200 [128]. It is very precise,
with a low sistematic error of ±15mm and statistical error of 5mm [70]. The
feature-based measurement model described in Section 6.3 will be applied to the
points and lines extracted, using the methods discussed in Chapter 7, from the range
laser scans provided by this device. It will be possible to employ other measurement
models discussed in Chapter 6, it is outside the scope of this work though.

The evaluation of the SLAM methods has take place in different types of envi-
ronments, which are described below.

Synthetic Maps design with CAD tools. The path and measurements are simu-
lated. Synthetic maps let us control the whole configuration of the environ-
ment. The simulation tool is responsible of simulate the workings of the range
laser and the odometry. We have used Player/Stage with this purpose [58].

113



114 11 Results

Controlled Real Both the path followed by the robot and the real environment
are developed by us. We can demonstrate that the SLAM algorithm works
correctly with real environment and devices, i.e. robot and laser sensor.

Benchmark Real There exist data logs of third-party experiments. In this case we
have no control at all over the robot path and the environment. Most known
repositories are Radish and Rawseeds, but there are many others.

Additionally, the experiments might be real or simulated. Depending on the
kind of environment, we might be constraint to a single option. That is the case
of synthetic maps, for which the experiments has to be simulated. We can also run
the experiments offline, which is the common case if using data logs, or online. In
the present work we consider both offline and online experiments, to demonstrate
that the FastSLAM algorithm can perform in real time with equivalent results.

In the following sections we describe the environments used, specifying their
experimental purpose and the source. In the case of synthetic environments, we
show the map and the parameters of its features. Contrary, for real maps we show
the occupancy grid maps provided by the authors of the experiments or the one
corresponding for the best particle obtained with our implementation of FastSLAM.

11.2.1 Basic map

Description Rectangular room with no elements inside, as shown in Figure 11.1.
It is simplest map possible. It contains large lines forming 90◦ angles among
them, which are easy to detect. Lines and corner parameters are given in
Table 11.1.

Purpose Reference map to compared the results obtain with more complex maps.
Although it is the simplest synthetic map considered, it does not mean it is
more favorable for mapping, since the scarcity of landmarks might lead to
incorrect results.

Source Synthetic map developed with CAD tools. Robot path and measurements
are simulated.

x

y

(0, 0)
1:400

20

10

Figure 11.1: Basic Map

11.2.2 Midline map

Description Rectangular room with a single wall inside, as shown in Figure 11.2. It
contains large lines forming 90◦ angles among them, which are easy to detect.
Lines and corner parameters are given in Table 11.2.

http://radish.sourceforge.net
http://www.rawseeds.org
http://kos.informatik.uni-osnabrueck.de/3Dscans/
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Lines Corners
ρ (m) θ (◦) x (m) y (m)

1 −90 −1 −1
19 0 19 −1
9 90 19 9
1 180 −1 9

Table 11.1: Basic Map features

Purpose Analyze the behavior with large, simple loops. This maps simply adds
one line to the basic map. However, it creates a particular structure common
in indoor environments, known as loop.

Source Synthetic map developed with CAD tools. Robot path and measurements
are simulated.

x

y

(0, 0)
1:400

3 14 3

5

5

Figure 11.2: Midline Map

Lines Corners
ρ (m) θ (◦) x (m) y (m)

1 −90 −1 −1
19 0 19 −1
9 90 19 9
1 180 −1 9
4 90

Table 11.2: Midline Map features

11.2.3 Bigloop map

Description Rectangular room with a big loop block inside. As shown in Fig-
ure 11.3 both the room and the loop block are rectangular, made of large
lines forming 90◦ angles among them, which are easy to detect. Lines and
corner parameters are given in Table 11.3.

Purpose Analyze the behavior with large loops, with a higher level of complexity
than the midline map.
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Source Synthetic map developed with CAD tools. Robot path and measurements
are simulated.

x

y

(0, 0)
1:400

3 14 3

3

4

3

Figure 11.3: Bigloop Map

Lines Corners
ρ (m) θ (◦) x (m) y (m)

1 −90 −1 −1
19 0 19 −1
9 90 19 9
1 180 −1 9
2 90 2 2
16 0 16 2
6 90 16 6
2 0 2 6

Table 11.3: Bigloop Map features

11.2.4 Bigloop2 map

Description Rectangular room with two medium loop blocks inside. As shown in
Figure 11.4 both the room and the loop blocks are rectangular, made of large
lines forming 90◦ angles among them, which are easy to detect. Lines and
corner parameters are given in Table 11.4. Note that some of the lines of the
loop blocks are shared, since we detect infinite lines, not segments.

Purpose Analyze the behavior with multiple loops slightly smaller than those of
the midline and bigloop maps.

Source Synthetic map developed with CAD tools. Robot path and measurements
are simulated.

11.2.5 Complex map

Description Non-rectangular room with two big, rectangular loop blocks inside, as
shown in Figure 11.5. Both the room and the loop blocks are made of large
lines forming 90◦ angles among them, which are easy to detect. Lines and
corner parameters are given in Table 11.5. Note that some of the lines of
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1:400
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4
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Figure 11.4: Bigloop2 Map

Lines Corners
ρ (m) θ (◦) x (m) y (m)

1 −90 −1 −1
9 90 −1 9
1 180 19 −1
19 0 19 9
2 90 2 2
8 0 8 2
6 90 8 6
2 0 2 6
16 0 10 2
10 0 16 2

16 6
10 6

Table 11.4: Bigloop2 Map features

the room and the loop blocks are shared, since we detect infinite lines, not
segments.

Purpose Analyze the behavior with environments with moderate complexity, with
several loops of different size and orientation.

Source Synthetic map developed with CAD tools. Robot path and measurements
are simulated.

11.3 Metrics

To assess the accuracy of the resulting maps we consider both the feature-based map
generated by the best particle of FastSLAM and the occupancy grid map constructed
with the whole set of laser scans and the robot path estimated with FastSLAM. If
we consider the feature-based map, we can compute the difference between the
resulting map and the real or reference map. We denote this difference the map
error εmap. Unfortunately, this metric is only applicable to synthetic maps, since we
now their real features. On the other hand, we compare the resulting occupancy
grid map and the real map visually. The main advantage of this approach is that
it can be applied when the real map is not available. Furthermore, it is useful to
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x

y

(0, 0)
1:400
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Figure 11.5: Complex Map

Lines Corners
ρ (m) θ (◦) x (m) y (m)

1 −90 −1 −1
39 0 39 −1
19 90 39 19
19 0 19 19
9 90 19 9
1 180 −1 9
2 90 2 2
36 0 36 2
6 90 36 6
2 0 2 6
16 90 22 9
22 0 36 9

36 16
22 16

Table 11.5: Complex Map features

analyze the performance of the SLAM algorithm when it close loops, among other
aspects.

The error of an estimated map of N landmarks is given by

εmap =
1
N

N∑
i=1

εlandmarki (11.1)

where εlandmarki is the error associated with the i-th estimated landmark, with re-
specto to the real landmark most likely to have generated it. This rule also applies
in the case that the resulting map has more landmarks than the real map.

If we consider point landmarks, the error is

εpoint =
√

(x−mj,x)2 + (y −mj,y)2 (11.2)
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that compute the euclidean distance with real landmark j.
In the case of line landmarks, they are converted into points using

x = ρ cos θ (11.3)

y = ρ sin θ (11.4)

thus, we can also apply (11.2) to compute line errors after the conversion above.
Being FastSLAM a probabilistic algorithm, the evaluation must be performed

applying statistical analysis. Therefor, we consider the error for M runs is the mean
of the errors of the map obtained for each simulation

ε =
1
M

N∑
i=1

εmapi (11.5)

This metric is thought to highlight the performance of the FastSLAM algorithm
implemented. Another interesting metric is the number of detected landmarks,
which can be compared with the true number in the real map. For M runs we take
the mean of detected landmarks of each single run. Combining these metrics and
by analyzing the occupancy grid map and the detected landmarks, we have com-
plete information regarding the performance of the SLAM algorithm under different
scenarios and configurations.

11.3.1 Error Assessment

When it comes to analyze the error of the resulting map, one might wonder whether
a particular error in aceptable or not. The answer is not trivial and it depends on
the final application of the resulting map, and the conditions under which it was
obtained. Note that the error is not only attributable to the accuracy of the detected
landmarks, but also to contributions of the following issues:

1. Discretization of the space due to the simulation tool. The map is passed
to the simulator as an image that the simulator represents internally with
a resolution of 2cm/pixel. The error induced by such discretization is not
quantifiable because we ignore the internal details of the simulator.

2. The location of landmarks in the maps does not take into account the width
of the walls, which is depicted in Figure 11.6. The synthetic maps described
thus far have been designed with the thinner width possible, around 2 or 3
pixels. Depending on the scale of the map, it might induce ±13cm of error.

Let a map of 1024 × 768p represent one environment of 40 × 20cm and
another one of 20×10cm. The resolution per pixel is 3.2cm/p and 1.8cm/p,
respectively.

If the walls has 3p width, the maximum error induced equals the length of
the hypothenuse in the corners, as shown in Figure 11.6. Therefore, the error
is
√

(3 · 3.2)2 + (3 · 3.2)2 ≈ 13.58cm for an environment of 40 × 20cm and√
(3 · 1.8)2 + (3 · 1.8)2 ≈ 7.64cm for an environment of 20× 10cm.

3. With FastSLAM, the resulting map is not the best map, but the most likely
one. The best particle at time t is the one that better explains the last
measurement zt, but not the one that minimize the error. Recall that the
true map is represented by the whole set of particles, which represent the
probabilistic distribution of all possible maps and robot poses.
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3p

3p
√

32 + 32 ≈ 4.2426p

Figure 11.6: Detail of the wall width, in pixels

Within the scope of Robotics, the resulting map is usually considered appropiate
if it is suitable for navigation. In general, the experiments discussed thus far are
carried out in large environments where the robot moves at a maximum speed of
0.5m/s = 1.8km/h, with trajectories of ≈ 200m. Therefore, errors in the location
of landmarks around 10cm are fairly acceptable.

11.4 Parametrization

The parameters that affect the FastSLAM algorithm implemented can be divided
in three major groups. First, we have the parameters of the feature extraction
methods. In particular, since we use an Split & Merge algorithm known as Iterative
End-Point Fit to extract lines, we have:

1. The minimum number of points pmin of a valid line.

2. The minimum length lmin of a valid line.

3. The minimum distance dmin from a point to a line to split it.

4. The upper thresholds of collinearity ρmax and θmax.

and, for the corner extraction algorithm,

1. The maximum distance dmax from the interception point of a pair of lines to
the actual segments.

Secondly, the motion and measurement models are parametrized by means of
the:

1. Covariance matrix of the noise of the measurement model Qt =
(
σ2
ρ 0

0 σ2
θ

)
.

2. Covariance matrix of the noise of the motion model Rt =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
θ

.

The αi parameters of the odometry and velocity motion models discussed in
Chapter 5 are related with Rt in some measure.
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Finally, we have the parameters of the particle filer:

1. The number of particles M .

2. The threshold of the number of effective particles Neff. If the number of
effective particles is lower than Neff the resampling step is applied, otherwise
it is omitted.

3. The probability p0 of observing a new landmark.

Parameter Description Type Constraint
m num particles N m > 0
p0 new feature probability R p0 ≥ 0
Neff num effective particles N 0 ≤ Neff ≤ m+ 1
dmin min point-line distance split R dmin ≥ 0
lmin min line length R lmin ≥ 0
pmin min num points in line N pmin ≥ 2
ρmax ρ colineality threshold R ρmax ≥ 0
θmax θ colineality threshold R 0 ≤ θmax ≤ π
dmax max corner-lines distance R dmax ≥ 0„
σ2
ρ 0
0 σ2

θ

«
meas model noise covariance R σ2· ≥ 00@σ2

x 0 0
0 σ2

y 0
0 0 σ2

θ

1A motion model noise covariance R σ2· ≥ 0

fe feature extractor Fe
le line extractor Le
lf line fitting Lf
mm motion model Mm

r resample method R

Table 11.6: FastSLAM parameters

Set Elements
Fe { LINE, POINT, LINEPOINT }
Le { LT, SEF, IEPF, SM }
Lf { LS, TLS }
Mm { VELOCITY, ODOMETRY }
R { SECUENTIAL, STRATIFIED }

Table 11.7: Sets of FastSLAM algorithms

All the parameters are summarized in Table 11.6, with their domain and the
range of values they might take in general. These are not the optimal or recom-
mended values which are shown in the sequel. The table also shows some alternative
algorithms that might take charge of particular steps of the SLAM algorithm. In
Table 11.7 are shown the sets of possible algorithms for those steps. Such sets are
limited to the algorithms available in the current FastSLAM implementation, but
there exist many other methods as it has been discussed throughout this document.

The recommended parametrization of Table 11.8 for the FastSLAM algorithm is
taken from [38]. This configuration must be thought as an initial parametrization



122 11 Results

before further tunning. The reader might consult [38], where the FastSLAM algo-
rithm is evaluted for different parameter configurations to obtain such an appropiate
parametrization.

Parameter Value Description
Iterative End-Point Fit
dmin [2, 3]cm Max dist. point-line
lmin [0.5, 2]m Min line length
pmin 15 points Min # points
ρmax 0.1m ρ collinearity th.
θmax 0.07rad θ collinearity th.

Corner extractor
dmax 0.1m

Motion model

Rt

[0.003, 0.008] 0 0
0 [0.003, 0.008] 0
0 0 0.008

 Error covariance

Measurement model

Qt

(
[0.01, 0.08] 0

0 [0.0008, 0.003]

)
Error covariance

Particle filter
M [100, 200] particles # particles
p0 0.005 New landmark prob.
Neff ∞ (resample always) Effective particles th.

Table 11.8: Recommended Parametrization

Additionally, one might select between the different methods that are part of
FastSLAM. Below we discussed some recommendation regarding each:

Features Better results are obtained with both line and corner point features. Nev-
ertheless, lines suffices to obtain accurate maps.

Line extraction Split & Merge is the line extraction method with better perfor-
mance and lower computational cost. Its variant Iterative End-Point Fit is
generally recommended, as discussed in Section 7.2. The parametrization
given in Table 11.8 is advisable.

Line fitting As discussed in Section 7.3, it is important to use the Hessian model
and the Total Least Squares (TLS) method, or one more robust, to manage
vertical lines correctly. For instance, the Weighted TLS and RANSAC are
recommended.

Motion model The odometry motion model is preffered over the velocity motion
model, although not significantly.

Resampling Both sequential and stratified resampling give similar results.

Normal sampling There exist a number of normal sampling methods, which are
discussed in Appendix A. The Ziggurat method is meant to be the most
efficient one. However, the Box-Muller or the Marsaglia methods usually
suffice. In fact, in the present work we have used Marsaglia mostly.
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RNG The Random Number Generator (RNG) recommended in the literature for
Monte Carlo simulation is the Mersenne Twister. Other RNGs does not work
properly and the resampling step of the particle filter could degenerate faster.

11.5 Evaluation in Synthetic Environments

We have run FastSLAM with simulated data for all the synthetic maps shown in
Section 11.2. The parametrization discussed thus far has been taken, but we have
only use M = 10 particles. The robot path have been control by hand at relatively
high speeds, at least for the linear velocity v, which is less error prone than the
angular velocity ω. All simulations have been done in real time. The results are
shown in Figure 11.7, 11.8, 11.9, 11.10 and 11.11, for the basic, midline, bigloop,
bigloop2 and complex, respectively.

Figure 11.7: Resulting feature-based map after running FastSLAM with the basic
map in the simulator

The resulting feature-based map and the estimated robot path are shown in the
simulator. Therefore, we superposed the resulting map over the real synthetic map
for comparison. In each step, the robot path and map of the best particle are shown.
The robot path is shown with a red line ( ), while the landmarks in the map are
shown with green lines ( ) —we are not using the corner point features. The
simulated robot, the range laser scan and the real map are shown by the simulator
itself.

We observe that the basic and midline maps are very accurate. More complex
maps, like the bigloop and bigloop2 maps are slightly less accurate. In general, all
the resulting maps are clearly suitable for navigation. The algorithm is capable to
map large maps of 20× 10m, even with multiple loops.

The complex map is even larger with 40×20m, and it has two loops of different
dimensions and orientation. The resulting map is less accurate but it still suffices for
navigation. We might increase the number of particles M to obtain better results.
In fact, this is necessary when maps are larger, specially if they have large loops.
This is the case of the complex map experiment, where the path is ≈ 160m length.
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Figure 11.8: Resulting feature-based map after running FastSLAM with the midline
map in the simulator

Figure 11.9: Resulting feature-based map after running FastSLAM with the bigloop
map in the simulator

Figure 11.10: Resulting feature-based map after running FastSLAM with the
bigloop2 map in the simulator
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Figure 11.11: Resulting feature-based map after running FastSLAM with the com-
plex map in the simulator

11.6 Evaluation in Real Environments

Now we turn into experiments in real environments using a mobile robot and a
range laser. We use the same configuration for the FastSLAM algorithm, with
M = 10 particles. The environment we are mapping is similar to the basic map. In
Figure 11.12 we see the path follow by the robot represented using pure odometry.
The acutal path consisted in two nearly perfect loops with square shape. The
error induced by the odometry produce an important divergence of the orientation
component of the robot pose.

Figure 11.12: Path with pure odometry of real experiment

If we apply FastSLAM we can obtain both the map and the actual robot path
estimates. In Figure 11.13 we have the resulting map and the robot path estimates
obtained by the best particle with FastSLAM. The image shows the feature-based
map, which containes the line features detected. Note that with real environ-
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Figure 11.13: Map and robot path estimates of the best particle obtained with
FastSLAM

ments and sensors, the noise is relatively higher. Thus, the same configuration
that works in simulated environments performs worse. In fact, the resulting map
might contain more lines than the real map has. For this reason, in Figure 11.13
the number of landmarks detected is excessive. Considering a higher motion and
measurement noise will produce better results. Furthermore, with more particles
we could maintain more hypotheses at some computational cost. However, if the
motion uncertainty increase, we must increase the number of particles M similarly,
to represent adequately the space of possible robot poses.
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Conclusions

12.1 Introduction

This thesis evaluates FastSLAM, a scalable approach to the Simultaneous Local-
ization And Mapping (SLAM) problem with unknown data association proposed
by Montemerlo in [93], in a real mobile robot. FastSLAM exploits sparsity in the
dependencies between data and the state variable over time to factor the SLAM
problem into a set of low-dimensional problems. It samples over the robot’s path
and data associations, and computes independent landmark estimates conditioned
on each particle. It is an efficient solution suitable for real time application and
deployment in mobile robots.

Recall that mapping is a field of active research and it is considered by many to
be a key prerequisite to truly autonomous robots [145]. There exist a number of
SLAM algorithms, but they are constraint to static, structured and low-dimensional
environments to some extent. This is also the case of FastSLAM, for which reason
the experiments have been performed in such type of scenario.

In the following sections we take some of the results obtained in [38], since
they are generally equivalent to the ones obtain here. The present work confirms
the applicability of FastSLAM in mobile robots operating in real time, with similar
efficiency and accuracy. In particular, we have used the robot model Pioneer P3-
DX in office-like environments, and the resulting maps are sufficiently accurate for
navigation.

12.2 FastSLAM Algorithm

We have implemented the FastSLAM 1.0 algorithm discussed in Chapter 10. It
has been evaluated under different conditions and environments, with both real and
simulated data. The integration in a mobile robot, being one of the major goals of
this thesis, have been fully achieved with promising results.

The FastSLAM algorithm must be thoroughly parametrized to work properly.
In this thesis we embrace the configuration proposed in [38] as an initial setting.
Thus, the algorithm gives accurate maps even for cluttered environments and noisy
odometry information. In all cases, the resulting map generated by the best particle
suits for navigation.

127
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12.3 Feature-based Maps. Landmarks

The original FastSLAM algorithm generates feature-based maps, that is, maps com-
posed of a set of landmarks. The election of the type of landmarks is crucial,
because it constraints the application of the algorithm to environments that can
be represented as a combination of such landmarks. Feature-based maps are low-
dimensional, which is an important advantage over other approaches. For this
reason, they are preferable for real time applications.

We considered lines and corner points, which suffices to map office-like envi-
ronments. Since corner points are computed over the detected lines, the later are
always necessary. However, it is possible to obtain accurate maps using line features
only. Corners give additional information that reduce the convergence time of the
method. Although not compulsory, corners are less ambiguous than line because it
is not common to find close corners, that might produce wrong data associations.
In this sense, corners are very information rich. Unfortunately, being points they
are observed sporadically, while line are observed more frequently because of their
length.

12.4 Feature Extraction

The robot observed the environment using a range laser sensor. There exist a num-
ber of feature extraction methods for range lasers, as discussed in Chapter 7. Since
we consider line and corner points as the basic features present in the environment,
the algorithms we have used are focused on the extraction of such features. Actu-
ally, we only extract lines, because corners are easily detected with an intersection
test between all possible pairs of lines.

The line extraction method used is called Iterative End-Point Fit, which is a
variant of the Split & Merge. It is an efficient, reliable, robust and simple al-
gorithm that produce excellent results in office-like environments. However, it is
highly parametrizable and the correct parametrization depends tightly of the envi-
ronment. Here, we considered the configuration summarized in Section 11.4 and
further discussed in [38].

12.5 Motion Model

The motion noise modelled has a high impact in the SLAM process. Indeed, the
noise considered in the motion model must be at least equal to the higher real noise
in the odometry. This is a mandatory condition to let the particle population cover
the whole space of possible robot poses. Otherwise, the SLAM method will diverge.
Adjusting the motion noise might be thought as an odometry calibration process.

However, one cannot use a very high value for the noise. If we increment the
noise of the motion model, we must also increment the number of particles in order
to cover the larger space of possible robot poses. This inevitably slows the algorithm,
since the computational cost of FastSLAM depends linearly on the number M of
particles. Also note that the noise in the orientation of the robot has a greater
impact if compared with that of the location [93, 147].

We have considered the velocity and odoemtry motion models proposed in [149].
In general, the odometry motion models produces slightly better results. Both



12.6 Measurement Model 129

models have several parameters αi that establish the Gaussian noise covariance as
a function of the linear and angular velocities v and ω. Therefore, it is possible to
express some kind of conditional dependence between both velocity components.
Such motion models let a fine-grain parametrization, that if adjusting adequately it
produces good results.

12.6 Measurement Model

Range lasers are very precise sensors, so it is recommended to consult the data
sheet to model their note accurately. Contrary to the motion model, measurement
noise cannot be compensate adjusting other parameters in the FastSLAM algorithm.
Thus, the noise must be adjusted thoroughly.

According with [38], once the range component ρ is fixed, the bearing compo-
nent θ affects notably in the SLAM process because it is common to find nearby
lines whose angles differ slightly. Depending on the noise considered, it might pro-
duce incorrect data associations leading to the method divergence. Contrary, given
a fixed noise for θ, the influence of the noise for ρ is irrelevant because it is not com-
mon to find parallel lines close, and then the possibility of incorrect data association
is low.

12.7 Data Association

The FastSLAM algorithm uses the Maximum Likelihood data association, which
generally works well when the correct data association is significantly more probable
than the incorrect associations. Since FastSLAM uses a particle filter to estimate the
robot path, it maintains multiple hypothesis that track different data associations
for each robot path estimate. This multi-hypothesis data association factors robot
pose uncertainty out of the data association problem. The resampling step of the
particle filter discard those particles that represent hypotheses with low likelihood.

However, it is still possible that a measurement corresponds to several landmarks
in the map. In the present work we simply discard such measurements, but there
exist a number of robust data association methods that consider this situation, as
discussed in Section 8.4.

12.8 Particle Filter

The resampling step of the particle filter is considered very important, since it
is responsible of select the particles most likely to represent the real robot path
and map, and discard the rest. The resampling method applied, called sequential
resampling or low variance resampling, has the property of maintain the variety
in the particle set [149]. Alternatively, the stratified resampling method has lower
sampling variance and tends to perform well when a robot tracks multiple, distinct
hypotheses with a single particle filter. In practice, both methods produce similar
results.

If the number of effective particles is greater than a threshold, the resampling
step can be omitted. The effect of such threshold is actually negligible in practice,
because the number of effective particles is kept high —close to the total number
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of particles M . Thus, only high values of the threshold, close to M might make a
difference, as shown in Section 4.2.

The higher the number of particles M , the better the accuracy of the resulting
map. Nevertheless, it is possible to obtain very accurate maps with less than 200
particles [38]. Finally, the probability p0 to consider a measurement as a new
landmark has not effect if it is kept within a rational interval. Such interval goes
from values greater than 1 for landmarks previously observed to values close to 0 for
new landmarks. Probably, with a large number of particles M and a large number
of landmarks N , it is possible that some landmarks produce data associations with
low probabilities, so in such cases p0 must be particularly small.



Chapter 13

Future Work

In the following sections we discuss a number of open research issues organized in
topics.

13.1 Map Representation

Feature-based maps considered in this work are formed by lines and corner points.
Such features are appropiate to describe office-like environment, but they are not
suitable for other environment, such as lands or forests. Furthermore, lines are also
a poor representation for structured environments because they have infinite length.
A better feature will be the segment, that is, a line delimited by a starting and end
point. This will also reduce the ambiguity of data association to some extent.

It will be even better to apply SLAM algorithms that does not rely on features.
In the case of FastSLAM, the Grid-based FastSLAM [149] variant is quite promising.
It is also interesting the combination of metric and topologic information in hybrid
maps [13, 14, 49].

The information registered of the environment might also be extended, specially
if multiple sensors are used. Landmarks can be annotated with properties such as
color, texture and so on. This additional information will be extremely useful to
reduce the ambiguity in the data association problem.

13.1.1 Dynamic Environments

In general, the environments where mobile robots operate are dynamic, e.g. doors
that get close or open, people walking, other robots, structural elements that are
moved, etc. It will be useful to develop a system with the ability to classify the land-
marks between static or dynamic [93]. The integration with the mapping algorithm
will allow to remove or modify landmarks in the map, considering dynamic objects.
The data association problem could also take this information into account.

13.1.2 Exploration

In order to construct the map of an unknown environment, the robot must explore it.
There exist a number of exploration algorithms [149], some of them with a probalistic
background. These algorithms control the robot so as to maximize its knowledge
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about the externel world. One approach is known as FastSLAM exploration. It
integrates a FastSLAM algorithm in the exploration method. It uses the grid-based
version of FastSLAM and it outputs an exploration path expressed in relative motion
commands. The action sequence is selected such that it minimizes the expected
entropy of the resulting map after executing the controls.

13.2 Robust Data Association

In the present work, under ambiguous data association the measurement is dis-
carded. This naive approach suffices in most cases, but there exist a number of
robust data association techniques that propose more appropiated solutions, as dis-
cussed in Section 8.4. In general, these methods consider multiple hypotheses when
there are many plausible data associations. For instance, Nieto propose the cre-
ation of new particles with each data association hypothesis [103]. Only the correct
hypotheses will survive after the resampling step, since they will be asigned a high
weights according with the maximum likelihood rule.

Similarly, the Multiple Hypothesis Tracking data association algorithm tracks
several hypotheses, one for each plausible data association [99, 117]. Other robust
data associations algorithms are the Joint Compatibility Branch and Bound [9, 100,
105] and Combined Constraint Data Association [7], which based on the comparison
of joint data association hypotheses using joint compatibility, a measure of the
probability of the set of observations ocurring together.

13.3 FastSLAM 2.0

Taking the implementation of FastSLAM 1.0, it is relatively straightforward to im-
plement the improved version FastSLAM 2.0 [93]. It solve the problem of the
particle filter degeneration and it produces equivalent results with fewer particles.
FastSLAM 2.0 incorporates the current observation into the proposal distribution
over robot paths, not just the importance weights, in order to better match the
posterior.
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Sampling

−σ σ

p(x) =
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(a) Normal Distribution
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{
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1√
6σ
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}

(b) Triangular Distribution

Figure A.1: Probability density functions with variance σ2

If X ∼ N (µ, σ2) and a and b are real numbers, then aX+b ∼ N (aµ+b, (aσ)2).
Therefore, it is possible to relate all normal random variables X to the standard
normal. If X ∼ N (µ, σ2), then

Z =
X − µ
σ

(A.1)

Conversely, if Z is a standard normal random variable, sampled from Z ∼
N (0, 1), then

X = µ+ σZ (A.2)

is a normal random variable with mean µ and variance σ2.
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Algorithm 22 Central Limit Theorem

Require: An uniform random number generator rand(a, b) that generates a random
number r ∈ [a, b].

Ensure: Random sample from a zero-mean normal distribution with variance σ2 =
1.

Algorithm: NormalCentralLimit() return u

1: return u =
1
2

12∑
i=1

rand(−1, 1)

Algorithm 23 Box-Muller

Require: An uniform random number generator rand(a, b) that generates a random
number r ∈ [a, b].

Ensure: A pair of random samples U = 〈u1, u2〉 from a zero-mean normal distri-
bution with variance σ2 = 1, obtained from a pair of uniform random samples
applying Box-Muller theorem.

Algorithm: BoxMuller() return U
1: r1 = rand(0, 1)
2: r2 = rand(0, 2π)
3: s =

√
−2 log (1− r1)

4: return U = 〈s cos r2, s sin r2〉

Algorithm 24 Marsaglia

Require: An uniform random number generator rand(a, b) that generates a random
number r ∈ [a, b].

Ensure: A pair of random samples U = 〈u1, u2〉 from a zero-mean normal distri-
bution with variance σ2 = 1, obtained from a pair of uniform random samples
applying the polar form of Box-Muller theorem, also known as Marsaglia.

Algorithm: Marsaglia() return U
1: repeat
2: r1 = rand(−1, 1)
3: r2 = rand(−1, 1)
4: r = r2

1 + r2
2

5: until 0 < r ≤ 1

6: s =

√
−2

log r
r

7: return U = 〈sr1, sr2〉

Algorithm 25 Triangular Central Limit Theorem

Require: An uniform random number generator rand(a, b) that generates a random
number r ∈ [a, b].

Ensure: Random sample from a zero-mean triangular distribution with variance
σ2 = 1.

Algorithm: TriangularCentralLimit() return u

1: return u =
√

6
2

(
rand(−1, 1) + rand(−1, 1)

)
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Algorithm 26 Triangular Geometric Expression

Require: An uniform random number generator rand(a, b) that generates a random
number r ∈ [a, b].

Ensure: Random sample from a zero-mean triangular distribution with variance
σ2 = 1.

Algorithm: TriangularGeometric() return u
1: a = 0 . lower limit
2: b = 0.5 . mode
3: c = 1 . upper limit

. internal precomputed values
4: d1 = b− a
5: d2 = c− a
6: d3 = c− b
7: p12 = d1d2

8: p13 = d1d3

9: p23 = d2d3

10: q1 =
d1

d2
. compute triangular random variable

11: r = rand(0, 1)
12: if r > q1 then
13: return u = c−

√
p23r − p13

14: else
15: return u = a+

√
p12r

16: end if





Appendix B

Point Geometry

B.1 Two-dimensional Point representation. Coor-
dinate Systems

B.1.1 Cartesian Coordinate System

A cartesian (or rectangular) coordinate system in two dimensions is commonly de-
fined by two axes, at right angles to each other, forming a plane (an xy-plane).

A point p is defined by orthogonal coordinates x and y. It’s usually represented
as p = (x, y).

Distances between points are defined by the length of the line vector between
the coordinates of each point p0 = (x0, y0) and p1 = (x1, y1):

d =
√

(x1 − x0)2 + (y1 − y0)2 (B.1)

Polar to Cartesian coordinate system transformation:

x = ρ cos θ (B.2)

y = ρ sin θ (B.3)

B.1.2 Polar Coordinate System

A polar coordinate system is a two-dimensional coordinate system in which each
point on a plane is determined by an angle and a distance.

Each point in the polar coordinate system can be described with the two polar
coordinates, which are usually called r (the radial coordinate, sometimes represented
as ρ) and θ (the angular coordinate, polar angle, or azimuth angle, sometimes
represented as ϕ or t). The r coordinate represents the radial distance from the
pole, and the θ coordinate represents the anticlockwise (counterclockwise) angle
from the 0◦ ray (sometimes called the polar axis), known as the positive x-axis on
the Cartesian coordinate plane.

Distances between two points p0 = (ρ0, θ0) and p1 = (ρ1, θ1) is defined by:

d =
√
ρ2

0 + ρ2
1 − 2ρ0ρ1 cos (θ0 − θ1) (B.4)
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Distance between two points in polar coordinates. Distances between two points
p0 = (ρ0, θ0) and p1 = (ρ1, θ1) in polar coordinates can be obtained applying
the law of cosines:

d2 = a2 + b2 − 2ab cosC (B.5)

where C = θ1 − θ0, a = ρ1, b = ρ0 and c = d so

d =
√
ρ2

1 + ρ2
0 − 2ρ1ρ0 cos (θ1 − θ0) (B.6)

which yields (B.4) after applying cosine reflecting property cos (−θ) = cos θ —i.e.
the difference between point angles can be shifted.

Cartesian to Polar coordinate system transformation:

ρ =
√
x2 + y2 (B.7)

θ =



arctan
(
y
x

)
if x > 0

arctan
(
y
x

)
+ π if x < 0 and y ≥ 0

arctan
(
y
x

)
− π if x < 0 and y < 0

π
2 if x = 0 and y > 0
−π2 if x = 0 and y < 0

(B.8)
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Line Geometry

C.1 Line Representation

Line
Model

Coordinate
System

Parametric

Polar

Cartesian

Equation

ImplicitExplicit

Figure C.1: Line Model Representation

The cartesian or rectangular representation in explicit form for y is denoted

y = b+mx (C.1)

while the implicit form is

ax+ by + c = 0 (C.2)

Note that the implicit representation can be normalize into a2
n + b2n = 1 dividing all

parameters by n =
√
a2 + b2, that is

anx+ bny + cn = (C.3)

a

n
x+

b

n
y +

c

n
= 0 (C.4)

Normalization of line Cartesian Implicit representation. Let a line l defined by the
cartesian implicit representation equation ax+by+c = 0, if a2 +b2 = 1 it is meant
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to be normalize. Dividing all line parameters by a factor n we can normalize a line
l,

a

n
x+

b

n
y +

c

n
= 0 (C.5)(a

n

)2

+
(
b

n

)2

= 1 (C.6)

a2

n2
+
b2

n2
= 1 (C.7)

a2 + b2

n2
= 1 (C.8)

a2 + b2 = n2 (C.9)

n =
√
a2 + b2 (C.10)

In order to keep a, b and c original sign we take the positive solution

n =
∣∣∣√a2 + b2

∣∣∣ (C.11)

The polar form is denoted

ρ = x cos θ + y sin θ (C.12)

The parametric form for two points p1 and p2 in cartesian coordinates pi =
(xi, yi) is denoted

x = x1(1− t) + x2t (C.13)

y = y1(1− t) + y2t (C.14)

which also represents a segment p1p2.
According with Figure C.2 (d) the rectangular to polar transformation is done

with

θ = arctan
(
− 1
m

)
(C.15)

ρ = b sin θ (C.16)

If arctan is computing with atan2 we obtain the right angle, but we need two
values dx and dy used to compute slope m = dy

dx . We only have m so we will
usualy have to use atan and apply a transformation, which can be speed up using
correction shown in Table C.1, depending on b value.

Fortunately, we can apply the following trick because we actually have two values
b and m.

θ = arctan (sign (b), sign (−b)m) (C.17)

Take into account that − sign a = sign (−a) and the two parameters version of
arctan is usually known as atan2 in many programming languages, which gives an
angle in the range [−π, π].
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(a) Cartesian line representation
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(b) Implicit Cartesian line representation
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(c) Parametric line representation

x

y

ρ = x cos θ + y sin θ

ρ

θ

(d) Polar line representation

Figure C.2: Different line representations

Arctangent computation. Let a line defined in cartesian coordinates with the im-
plicit equation y = b+mx, with y-intercept b and slope m, then a parallel line with
y-intercept ±1 can be constructed substracting b− sign b.

y = b+mx− (b− sign b) (C.18)

= b+mx− b+ sign b (C.19)

= sign b+mx (C.20)

The original line y = b+mx has the following intersection points with x and y
axis,

x-intercept: y = 0→ 0 = b+mx⇒ x = − b

m
(C.21)

y-intercept: x = 0→ y = b (C.22)

Analogously, the shifted line y = sign b+mx has the following,

x-intercept: y = 0→ 0 = sign b+mx⇒ x = − sign b
m

(C.23)

y-intercept: x = 0→ y = sign b (C.24)
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x

y

anx+ bny + cn = 0

− cb

− c
a

(x0, y0)

(x1, y1)

b

−an =
√
a2 + b2

1

bn

−an

− cnbn

Figure C.3: Normalize Implicit Cartesian line representation

arctan b Cuadrant Correction

+ + I —
+ - III +π
- + II +π
- - IV +2π

Table C.1: Angle transformation

In both (C.21) and (C.23), the minus sign actually belongs to m. This will be
important since arctan strongly depends on the signs.

The slope m can be computed with the incremental coordinate differences dx
and dy between two points that belong to the line. Choosing the origin (0, 0) and
the intersection points px = (xc, 0) with x axis and py = (0, yc) with y axis, yields

dx = xc (C.25)

dy = yc (C.26)

For the orignal line y = b+mx we have

dx = − b

m
(C.27)

dy = b (C.28)
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x

y

b

y = b+mx

− b
m

1
y = sign (b) +mx

− sign b
m

b− sign b

Figure C.4: Arctangent computation from line cartesian representation parameters
b and m

and for the shifted line y = sign b+mx

dx = − sign b
m

(C.29)

dy = sign b (C.30)

The slope of a line is m = dy
dx , while the slope of the normal ~N is m ~N = dx

dy .
Both lines can be used for this computation, but the shifted line gives a simple
expression because in the original one we had to compute the quotient − b

m . Hence,

m ~N =
dx

dy
(C.31)

=

sign b
−m

sign b
(C.32)

=
sign b

− sign (b)m
(C.33)

=
sign b

sign (−b)m
(C.34)

= − 1
m

(C.35)

Therefore, the argument of the normal vector to the line is the arctan of m ~N .
To obtain an angle in the range [−π, π] we use the not simplify quotient (C.34).

θ = arctan (sign (b), sign (−b)m) (C.36)

With atan2 the angle is in the range [−π, π], so we must add 2π if the angle is
negative to transform it into the range [0, 2π].
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C.2 Line-line intersection

The cartesian explicit representation of a pair of lines l0 and l1 is

l0 : y = b0 +m0x (C.37)

l1 : y = b1 +m1x (C.38)

Matching both equations yields

b0 +m0x = b1 +m1x (C.39)

Solving for x and y,

x =
b1 − b0
m1 −m0

(C.40)

y = b0 +m0x (C.41)

If m0 = m1 lines l0 and l1 are parallel and if b0 = b1 too, they are colinear
—i.e. l0 = l1. That is, the intersection point p is

p =

none if m0 = m1

{
colinear (l0 = l1) if b0 = b1

parallel (l0 ‖ l1) others

(x, y) others

(C.42)

The intersection between two lines may also be computed using the implicit
cartesian equation:

l0 : A0x+B0y + C0 = 0 (C.43)

l1 : A1x+B1y + C1 = 0 (C.44)

The corresponding transformation to explicit form yields

l0 : y = −C0

B0
− A0

B0
x (C.45)

l1 : y = −C1

B1
− A1

B1
x (C.46)

so we have the following relations with the explicit equation parameters

l0 :

{
b0 = −C0

B0

m0 = −A0
B0

(C.47)

l1 :

{
b1 = −C1

B1

m1 = −A1
B1

(C.48)

Therefore, by substitution in (C.40)

x =
−C1
B1

+−C0
B0

−A0
B0

+ A1
B1

(C.49)

=
C0B1−C1B0

B0B1
A1B0−A0B1

B0B1

(C.50)

=
C0B1 − C1B0

A1B0 −A0B1
(C.51)
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As the polar equation is actually a normal implicit cartesian form, where A =
cos θ, B = sin θ and C = −ρ, by substitution we have

x =
−ρ0 sin θ1 + ρ1 sin θ0

cos θ1 sin θ0 − cos θ0 sin θ1
(C.52)

=
ρ1 sin θ0 − ρ0 sin θ1

sin θ0 cos θ1 − cos θ0 sin θ1
(C.53)

(C.54)

Applying the trigonometric property sin (α± β) = sinα cosβ−cosα sinβ yields

x =
ρ1 sin θ0 − ρ0 sin θ1

sin (θ0 − θ1)
(C.55)

However, as sin and cos of θ0 and θ1 may be precomputed for each line, (C.53)
is preferable to (C.55) because it will be faster.

Finally, y is obtained by substitution in the polar form and solving for y

y =
(ρ− x cos θ)

sin θ
(C.56)

=
ρ

sin θ
− x

tan θ
(C.57)

=
ρ

sin θ
+ x tan

(
θ +

π

2

)
(C.58)

where ρ and θ are taken from the line where sin θ is greater to avoid the loss of
precission due to the quotient. When sin θ and cos θ are precomputed, (C.56) is
the safer and faster choice.

Furthermore, when θ0 = θ1 lines l0 and l1 are parallel and if ρ0 = ρ1 too, they
are colinear —i.e. l0 = l1. The intersection point p is

p =

none if θ0 = θ1

{
colinear (l0 = l1) if ρ0 = ρ1

parallel (l0 ‖ l1) others

(x, y) others

(C.59)

C.3 Point-line distance

Consider the cartesian implicit representation

ax+ by + c = 0 (C.60)

The point-line distance is given by projecting vector r (from the point to the
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x

y

ax+ by + c = 0

p0 = (x0, y0)

d

v = (a, b)

r = (x− x0, y − y0)

Figure C.5: Point-Line distance using projection

line) onto v (perpendicullar to the line)

d = |projvr| (C.61)

=
|v · r|

v
(C.62)

= |v̂ · r| (C.63)

=
∣∣∣∣a(x− x0) + b(y − y0)√

a2 + b2

∣∣∣∣ (C.64)

=
∣∣∣∣ax+ by − ax0 − by0√

a2 + b2

∣∣∣∣ (C.65)

=
∣∣∣∣ax0 + by0 + c√

a2 + b2

∣∣∣∣ (C.66)

If the cartesian implicit representation is normalize, i.e. a2 +b2 = 1 the distance
can be computed faster:

d = |ax0 + by0 + c| (C.67)

If we used the explicit cartesian form y = mx+ b, we take

A = m (C.68)

B = −1 (C.69)

C = b (C.70)

hence

d =
∣∣∣∣mx0 − y0 + b√

m2 + 1

∣∣∣∣ (C.71)

If we used the polar form ρ = x cos θ + y sin θ, we take

A = cos θ (C.72)

B = sin θ (C.73)

C = −ρ (C.74)
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hence

d =

∣∣∣∣∣x0 cos θ + y0 sin θ − ρ√
cos2 θ + sin2 θ

∣∣∣∣∣ (C.75)

= |x0 cos θ + y0 sin θ − ρ| (C.76)

The polar form is actually a normal implicit cartesian form, with two parameters
instead of three.

Proof. Both distances expressions, obtained from explicit cartesian and polar equa-
tion, are actually equivalent.

d = |x0 cos θ + y0 sin θ − ρ| (C.77)

= |sin θ|
∣∣∣ x0

tan θ
+ y0 −

ρ

sin θ

∣∣∣ (C.78)

where 1
tan θ = −m and ρ

sin θ = b. Hence

d = |sin θ| |mx0 − y0 + b| (C.79)

At this point we only have to proof that |sin θ| = 1

|√m2+1| . Substituting m =

− 1
tan θ yields

1∣∣√m2 + 1
∣∣ =

1∣∣∣∣√(− 1
tan θ

)2 + 1
∣∣∣∣ (C.80)

1∣∣√m2 + 1
∣∣ =

1∣∣∣√ 1
tan2 θ + 1

∣∣∣ (C.81)

1∣∣√m2 + 1
∣∣ =

1∣∣∣∣√ cos2 θ+sin2 θ
sin2 θ

∣∣∣∣ (C.82)

1∣∣√m2 + 1
∣∣ =

1∣∣∣√ 1
sin2 θ

∣∣∣ (C.83)

1∣∣√m2 + 1
∣∣ =

1
1

|sin θ|
(C.84)

1∣∣√m2 + 1
∣∣ = |sin θ| (C.85)

(C.86)

An alternative way to obtained the distance in terms of the polar equations is
obtained applying the −θ rotation shown in Figure C.6 (a) to both line and point,
in order to have a vertical line with θ = 0. Therefore, the distance can be computed
through the x-axis only, i.e. d = dx = |ρ− x̂0|, as Figure C.6 (b) shows, and later
rotated θ to undo the initial transformation.

d = |ρ− x̂0| (C.87)

= |ρ− (x0 cos θ + y0 sin θ)| (C.88)

= |x0 cos θ + y0 sin θ − ρ| (C.89)
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x
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(ρ, 0)

ρ

p̂0

(a) Transformation applying −θ rotation

x

y

(ρ, 0)

ρ

p̂0 = (x̂0, ŷ0)

d = dx = |ρ− x̂0|

(b) Horizontal distance, after −θ rota-
tion

Figure C.6: Point-Line distance using transformation
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