The adsorption of copper to chitin in seawater

MELCHOR GONZALEZ-DAVILA* and FRANK J. MILLERO
University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4660 Rickenbacker Causeway, Miami, FL 33149, USA

(Received June 27, 1989; accepted in revised form December 15, 1989)

Abstract—The interaction of metal ions with particulate matter is important in limiting their concentration in seawater. Chitin is one of the constituents of the natural particulate organic matter that can interact with metal ions and therefore may serve as a reasonable model for natural organic solids. The adsorption of Cu\(^{2+}\) on the chitin surface has been studied in seawater as a function of pH, temperature, and salinity. The amphoteric properties of the surface of chitin were characterized in 0.7 M NaCl in terms of a two-proton acid-base system (pK\(_{a1}\) = 5.4) with acidity constants p\(K_{a1}\) = 4.4 ± 0.2 and p\(K_{a2}\) = 6.4 ± 0.2. The maximum proton exchange capacity of chitin was found to be 2.3 ± 0.3 mol kg\(^{-1}\), broadly similar to other solids. The rates of the adsorption were quite rapid (t\(_{1/2}\) = 8 min) and not strongly affected by the presence of other metals such as Cd\(^{2+}\) and Pb\(^{2+}\). The adsorption equilibrium data have been found to correlate well with surface complex-formation equilibria or the mathematically equivalent Langmuir-type adsorption equilibria. The value for the stability constant of Cu\(^{2+}\) on chitin was found to be log\(K_{d}\) = 8.95 ± 0.01, and the complexing capacity of chitin was found to be 6.9 and 5.9 \(\mu\)mol g\(^{-1}\), respectively, in the absence and in the presence of Cd\(^{2+}\) and Pb\(^{2+}\). An increase in the salinity and a decrease in the temperature result in greater adsorption of Cu\(^{2+}\) to chitin.

INTRODUCTION

The scavenging of trace metals by particulate matter is important in regulating the concentration and distribution of metals in the oceans (Whitefield and Turner, 1987). Field measurements suggest that the scavenging process of some metals can be characterized as a reversible equilibrium, although kinetics may also be significant (Bacon and Anderson, 1982; Nyffeler et al., 1986; Nozaki et al., 1987; Honeyman and Santschi, 1988). Although few studies of scavenging processes of metals have been made in the field (Somayajulu and Craig, 1976; Anderson et al., 1983), numerous laboratory studies have been carried out on the uptake of metals by sediments and pure mineral phases (Dugger et al., 1964; Huang and Stumm, 1973; Murray and Brewer, 1977; Benjamin and Leckie, 1981; Balistreri and Murray, 1982; Davis, 1984; Davis and Leckie, 1979). A great deal of emphasis has been placed on the adsorption behavior of iron and manganese oxides, because their presence in marine sediments and ferromanganese nodules is thought to be responsible for controlling certain trace metal concentrations in seawater.

Moreover, it is now widely accepted that adsorption and complexation of trace metals by natural dissolved and particulate organic materials is a critical factor that influences both bio-availability and toxicity to organisms (Goncalves and Lopes da Conceicao, 1989; Coale and Bruland, 1988). An understanding of the interactions between the metals (Cu\(^{2+}\), Pb\(^{2+}\), Cd\(^{2+}\), Zn\(^{2+}\), etc.) and natural heterogeneous compounds such as organic macromolecules (e.g., humic substances, chitin, chitosan, amino acids, etc.) and exopolymers from bacteria or algae is indispensable for determining the behavior of these cations in aqueous environments ranging from rivers, lakes, and seawater to soil and sediment pore waters (Davis, 1984).

Phytoplankton cells, algae, biological debris, and bacteria exhibit in these systems relatively large surface areas containing various functional groups—such as carboxylic, amino-, thio-, hydroxy-, and hydroxy-carboxylic—that can interact with metal ions. These biogenic organic particles play an important role in binding metals and transferring them to the sediment, thereby regulating the concentration of dissolved metal ions (Fisher, 1985; Fisher et al., 1980, 1983, 1984, 1987; Xue et al., 1988; Schreiber et al., 1985; Gordon and Miller, 1987; Goncalves and Lopes da Conceicao, 1989).

Chitin, its deacetylated derivative chitosan, and humic substances have the ability to complex a number of transition elements in natural aqueous systems. Chitin and chitosan are constituents of the natural dissolved and particulate organics and part of fungi and bacteria. They are consequently abundant in the natural environment. Since chitin is rapidly biodegraded (Zobell and Rittenberg, 1983), it is not a major component of sediments. While chitosan and chitin can form stable metal complexes, one would expect the complexes to also be biodegradable. This may make chitin an important agent for transporting metals from surface to deep waters. The complexes could be formed in surface waters, sink, and be degraded in deep waters, releasing the associated metals (Yoshinari and Subramanian, 1976; Subramanian, 1978).

Much of our knowledge of the interactions of chitins with metals comes from investigations of their possible uses to remove heavy metals in waste and natural waters (Muzzarelli, 1973, 1977; Hung and Han, 1977; Edin et al., 1980; Suder and Wightman, 1983; Yang and Zall, 1984). Chitosan was studied due to its high chelating ability (Muzzarelli, 1973, 1977; Muzzarelli et al., 1980; Muzzarelli and Tanfani, 1982; Kurita et al., 1979). Since chitin is a

* Present address: Universidad Politecnica de Canarias, Facultad de Ciencias del Mar, Las Palmas, PO Box 550, España.
natural component of particulate organic material, it can serve as a model organic phase for studying metal adsorption in marine systems.

In this paper we examine the adsorption of Cu\(^{2+}\) to chitin in seawater. The measurements were made as a function of pH, salinity, and temperature in an attempt to better understand the mechanism of the adsorption.

EXPERIMENTAL

The chitin powder used (Sigma) was derived from crab shells. Prior to use, the chitin was washed three times with 0.1 M HCl. The solid and solution were separated by centrifugation at 12,000 rpm for 1.5 min and then eluted repeatedly with Millipore Super Q ion-exchanged water until the pH was constant. The samples were air-dried. The surface was measured by the BET method using krypton as the adsorbate. The value found was 0.5 ± 0.03 m\(^2\) g\(^{-1}\) for the bulk chitin used in most of the experiments. Various size fractions from 88 μm to 210 μm gave similar values (to ±0.1 m\(^2\) g\(^{-1}\)). Chitin powder was sieved prior to study by pre-washed Nylon mesh. Preliminary studies with different fractions ranging between 250 μm to lower than 88 μm gave similar adsorption results as the bulk, which was used in all the following studies. The concentration used in all the experiments was 6 g dm\(^{-3}\) of chitin, an amount which is similar to that used by MUZZARELLI (1973, 1977). Similar results were exhibited using different amounts of chitin (MUZZARELLI, 1977). Gulf Stream seawater (5 ± 3.53) was filtered through 0.45 μm Millipore acid-washed filters. Copper, Cadmium, and Lead atomic absorption standard solutions (Sigma) were used to make up the solutions.

The metal concentrations were determined using Differential Pulse Anodic Stripping Voltammetry (DPASV). The measurements were performed with the PAR 303 Static Drop Mercury Electrode (SDME) using the PAR Model 348B Polarographic Analyzer System connected to a DMP-40 plotter. For all the measurements performed in the Hanged Mercury Drop Electrode (HMDE) mode, a polystyrene cell was employed (SPIRO et al., 1974). An Ag/AgCl electrode was used as the reference electrode and a coiled platinum wire as the auxiliary electrode.

The reduction potential was -0.6, -0.8, and -0.9 V, respectively, for Cu\(^{2+}\), Pb\(^{2+}\), and Cd\(^{2+}\). In all cases, the purge time was 5 min; the scan rate, 2 mV/s; the pulse height, 50 mV; deposition time, 1 min. For most of the studies, the measurements were made in duplicate. The peak potential of Copper(II), Lead(II), and Cadmium(II) are, respectively, -0.180 ± 0.02, -0.470 ± 0.01, and -0.680 ± 0.005 V. The measurements of adsorption of Cu\(^{2+}\) to chitin were made after the samples were equilibrated overnight at the desired temperature in a shaker bath. All the samples were equilibrated with room air at the given pH, temperature, and salinity studied. The pH was adjusted by adding 0.1 M HCl or NaOH. All the measurements were made on the free proton scale (MILLERO, 1986). The seawater pH measurements were calibrated using TRIS-seawater buffers.

The conditional acidity constants of the positively and negatively charged surface groups. The values of *pK\(_{a1}\) and *pK\(_{a2}\) are the conditional acidity constants of the positively and negatively charged surface groups. The equilibrium constant for Eqns. (2) to (5) for a given ionic media have been shown (STUMM and MORGAN, 1981) using equilibria of the type

\[
\begin{align*}
\text{SOH} + \text{Me}^{2+} & \rightleftharpoons \text{SOH} + \text{H}^+; \quad *K_{a1} \\
2\text{SOH} + \text{Me}^{2+} & \rightleftharpoons \text{SOH} + \text{H}^+; \quad *K_{a2}
\end{align*}
\]

The acid-base properties of the surface functional groups may be characterized as a diprotic acid

\[
\begin{align*}
\text{SOH}^+ & \rightleftharpoons \text{SOH}^+ + \text{H}^+; \quad *K_{a1} \\
\text{SOH}^+ & \rightleftharpoons \text{SO}^2- + \text{H}^+; \quad *K_{a2}
\end{align*}
\]

where *SOH* is a positively charged surface group with two dissociable protons, *SOH* is a neutral surface group with one dissociable proton, and *SOH* is a negatively charged surface group. The values of *K\(_{a1}\) and *K\(_{a2}\) are the conditional acidity constants of the positively and negatively charged surface groups. The equilibrium constant for Eqs. (2) to (5) for a given ionic media have been shown (STUMM and MORGAN, 1981; SPIRO et al., 1983; BURFLE and ALTMEANN, 1987) to depend on the charge on the surface and the extent of surface binding of metal ions and protons.

Since the chitin surface contains various functional groups, this simple approach may not be appropriate. The acid-base properties may be characterized by the general equations

\[
\begin{align*}
\text{RH}^+ & \rightleftharpoons \text{RH} + \text{H}^+; \quad *K_{a1} \\
\text{RH} & \rightleftharpoons \text{R} + \text{H}^+; \quad *K_{a2}
\end{align*}
\]

where *RH* is the protonated form of the molecule, *RH* is the unprotonated form of the molecule, and *RH* is the fully deprotonated form of the molecule. The adsorption of Cu\(^{2+}\) with the chitin surface may be more similar to the formation of Cu\(^{2+}\) complexes with polyfunctional macromolecules (XUE et al., 1988), the general equation being

\[
R_i\text{H}_n + \text{Cu}^{2+} \rightleftharpoons R_i\text{Cu}^{(2-n)} + n\text{H}^+; \quad *K_i
\]

where *R* is the receptor site, *H* is the proton, *Cu* is the copper ion, and *n* is the number of protons released.

RESULTS AND DISCUSSION

The adsorption of metal ions by oxide surfaces has been represented by the formation of surface complexes (STUMM and MORGAN, 1981) using equations of the type

\[
\begin{align*}
\text{SOH} + \text{Me}^{2+} & \rightleftharpoons \text{SOH} + \text{H}^+; \quad *K_{a1} \\
2\text{SOH} + \text{Me}^{2+} & \rightleftharpoons \text{SOH} + \text{H}^+; \quad *K_{a2}
\end{align*}
\]

The acid-base properties of the surface functional groups may be characterized as a diprotic acid

\[
\begin{align*}
\text{SOH}^+ & \rightleftharpoons \text{SOH}^+ + \text{H}^+; \quad *K_{a1} \\
\text{SOH}^+ & \rightleftharpoons \text{SO}^2- + \text{H}^+; \quad *K_{a2}
\end{align*}
\]

where *SOH* is a positively charged surface group with two dissociable protons, *SOH* is a neutral surface group with one dissociable proton, and *SOH* is a negatively charged surface group. The values of *K\(_{a1}\) and *K\(_{a2}\) are the conditional acidity constants of the positively and negatively charged surface groups. The equilibrium constant for Eqs. (2) to (5) for a given ionic media have been shown (STUMM and MORGAN, 1981; SPIRO et al., 1983; BURFLE and ALTMEANN, 1987) to depend on the charge on the surface and the extent of surface binding of metal ions and protons.

Since the chitin surface contains various functional groups, this simple approach may not be appropriate. The acid-base properties may be characterized by the general equations

\[
\begin{align*}
\text{RH}^+ & \rightleftharpoons \text{RH} + \text{H}^+; \quad *K_{a1} \\
\text{RH} & \rightleftharpoons \text{R} + \text{H}^+; \quad *K_{a2}
\end{align*}
\]

where *RH* is the protonated form of the molecule, *RH* is the unprotonated form of the molecule, and *RH* is the fully deprotonated form of the molecule. The adsorption of Cu\(^{2+}\) with the chitin surface may be more similar to the formation of Cu\(^{2+}\) complexes with polyfunctional macromolecules (XUE et al., 1988), the general equation being

\[
R_i\text{H}_n + \text{Cu}^{2+} \rightleftharpoons R_i\text{Cu}^{(2-n)} + n\text{H}^+; \quad *K_i
\]

where *R* is the receptor site, *H* is the proton, *Cu* is the copper ion, and *n* is the number of protons released.
Adsorption of Cu$^{2+}$ on chitin particles in the ocean

where R_i represents a deprotonated surface site. Since the surface groups are not identical, it is not possible to determine all the values of $* K_i$. If one assumes that a general macroscopic adsorption equilibrium can be used to define an average equilibrium constant, we have

$$\langle RH \rangle_{i} + Cu^{2+} = R Cu^{(2-n)\#} + nH^{+}; \quad * K_{3i}. \quad (9)$$

If the charges on the species are omitted, the equilibrium constant for Eqn. (9) is given by

$$* K_{3i} = \frac{\langle R Cu \rangle [H^{+}]^n}{\langle RH \rangle [Cu^{2+}]}, \quad (10)$$

where $\langle R Cu \rangle$ and $\langle RH \rangle$ are, respectively, the copper and protons absorbed to the chitin as mol g$^{-1}$. For a given pH, the conditional constant is defined by

$$* K_{3i} = \frac{\langle R Cu \rangle}{\langle RH \rangle [Cu^{2+}]}, \quad (11)$$

It should be noted that Eqn. (11) is mathematically and conceptually equivalent to the Langmuir isotherm

$$\Gamma_{Cu} = \frac{\Gamma_{MAX}[Cu^{2+}]}{(* K_{3i})^{-1} + [Cu^{2+}]} \quad (12)$$
or

$$\langle R Cu \rangle = \frac{\langle R \rangle [Cu^{2+}]}{(* K_{3i})^{-1} + [Cu^{2+}]}. \quad (13)$$

where $\langle R Cu \rangle$ and $\langle R \rangle$ correspond to Γ_{Cu} and Γ_{MAX}, the amount of copper adsorbed, and the maximum copper capacity of ion adsorption or complexing capacity (mol g$^{-1}$). The values of $* K_{3}$ and $\langle R \rangle$ can be obtained by using typical Scatchard or Langmuir plots. Although this is a simplistic approach of modelling the complex adsorption of copper and other metals to chitin, it gives a chemical framework to evaluate our results.

Acid-base properties of chitin

In our first series of measurements, an attempt was made to characterize the functional groups of chitin. Chitin is a polymer of N-acetylgalacosamine; thus, chitin is an amide of acetic acid. However, chitin cannot be sharply distinguished from chitosan, because fully acetylated and fully deacetylated chitins do not normally occur in nature and are difficult to prepare (MUZZARELLI, 1977).

The acidity constants for chitin from Eqs. (6) and (7) are given by

$$* K_{21} = \frac{\langle RH \rangle [H^{+}]^2}{\langle RH \rangle}, \quad (14)$$

$$* K_{22} = \frac{\langle R \rangle [H^{+}]^2}{\langle RH \rangle}. \quad (15)$$

The sequential binding of protons by the various functional groups of the surface of chitin is shown in Fig. 1. The acidity constants involved in this titration have been determined by using the ACBA program (ARENA et al., 1978). Values of $* K_{21} = 4.40 \pm 0.23$ and $* K_{22} = 6.45 \pm 0.25$ were obtained as a result of different titrations of chitin in 0.7 M NaCl. The pH of zero charge, pH$_{zpc}$, is a convenient reference value for characterizing surface charge, even though no surface potential has a unique pH$_{zpc}$. Analytically, pH$_{zpc}$ can be calculated from the pH at which $\langle RH \rangle = \langle R \rangle$ or from Eqs. (14) and (15):

$$pH_{zpc} = \frac{1}{2}(pK_{a1} + pK_{a2}). \quad (16)$$

A value of pH$_{zpc} = 5.38 \pm 0.2$ was found for chitin. At pH values below the zero point of charge, $\langle RH \rangle > \langle R \rangle$, and at pH values above pH$_{zpc}$, $\langle R \rangle > \langle RH \rangle$. The maximum titratable proton exchange capacity of the chitin surface groups was found to be 2.34 ± 0.3 mol kg$^{-1}$ chitin.

Table 1 shows values for the acidity constant of different adsorbents together with values of pH$_{zpc}$. A two-proton acid-base system has been used to interpret the acid-base properties for an algal surface by XUE et al. (1988). They interpreted the algal surface to contain carboxylic acid groups that deprotonate at pH 4-5 and amino groups that undergo proton transfer around pH 8-9.5 (comparable to the pK value of glycine $pK_{al} \approx 9.5$) (Table 1). Chitosan has been described as a strong base with $pK_{al} = 6.3$ (MUZZARELLI, 1973) corresponding to its primary amino groups (Table 1). The values that we obtained in this work are generally similar to the values for other organic and inorganic solids. The chitin surface can be interpreted from the titration curve (Fig. 1) as a surface containing primarily carboxylic acid groups with $pK_{al} = 4.40$, which is comparable with the second acidity constant of phthalic acid $pK_{al} = 5$, and amino groups with a $pK_{al} = 6.45$. The latter value corresponds with the pK_{al} for the primary amino groups in the deacetylated derivative chitosan (Table 1).

Surface uptake of Cu$^{2+}$ by chitin

In Fig. 2, a typical determination of the complexing capacity of seawater is shown by curves 1 and 2. Using a van den Berg-Ruzic plot (APTE et al., 1988), the complexing capacity of seawater can be evaluated (Fig. 3):

$$\frac{[Cu^{2+}]}{[Cu]} = \frac{[Cu^{2+}]}{C_1} + \frac{1}{K_{cond(Cu^{2+})}C_1}. \quad (17)$$

where C_1 is the total ligand concentration in seawater and $K_{cond(Cu^{2+})}$ the conditional stability constant determined with respect to $[Cu^{2+}]$, the concentration of dissolved copper in all inorganic forms. The presence of two ligands or sites with sufficient affinity for Cu$^{2+}$ has been shown to cause the nonlinear behavior of the plots (VAN DEN BERG, 1984). The current...
adsorption of Cu(II) on chitin in seawater.

In Fig. 3 at lower concentrations of Cu(II) may be due to a second ligand. Our measurements are not sufficient in the low concentration to evaluate the first stability constant. The ligand concentration obtained for the Gulf Stream seawater is CuL = 175 nM, the same order of magnitude as found by others (see Table 2). In order to compare our conditional stability constant $K_{\text{cond}}(\text{Cu}^{2+})$ with other values reported by different authors (Table 2), it is necessary to use a conditional stability constant of the form $K_{\text{cond}}(\text{Cu}^{2+})$, determined with respect to free Cu(II):

$$\{\text{Cu}^{2+}\}_v = \frac{[\text{Cu}]}{a_{\text{Cu}}}.$$ \hspace{1cm} (18)

a_{Cu} is the inorganic side reaction coefficient of copper in seawater. Although sizable variability in the accepted inorganic side reaction coefficient for copper has been reported (COALE and BRULAND, 1988), a value of 24 (BYRNE and MILLER, 1985) was chosen to normalize our conditional stability constant with respect to free Cu(II) in Table 2. The conditional value for log $K_{\text{cond}}(\text{Cu}^{2+})$ obtained is 7.4 ± 0.1 which corresponds with a normalized value of log $K_{\text{cond}}(\text{Cu}^{2+})$ = 8.8 ± 0.2.

Table 2 Values for copper-complexing ligands in seawater

This value for the conditional stability constant of Cu(II) in Gulf Stream seawater is in good agreement with those reported in Table 2 for Atlantic and Pacific seawaters. One must keep in mind that this simple treatment of the Cu(II)-organic interactions does not necessarily prove that only two ligand sites are present. It should be considered to be a convenient way of accounting for the interactions.

It is obvious from Fig. 2 that the addition of chitin (curve 3) dramatically changes the seawater’s complexing capacity. For its calculation, the adsorbed amounts of copper were estimated using curves 2 and 3, while the equilibria are obtained from curves 3 and 1. The adsorbed copper calculated in this manner was found to be in good agreement with the values measured on filtered samples.

Figure 4 shows Langmuir’s isotherm [Eqn. (13)] for the adsorption of Cu(II) on chitin. We may derive from the experimental data the equilibrium constant *K_3*, transforming the Eqn. (13) into

$$\frac{1}{[\text{RCu}]} = \frac{1}{[\text{RCu}]} + \frac{1}{[\text{RCu}]} + \frac{1}{[\text{RCu}]} [\text{Cu}]$$ \hspace{1cm} (19)

and by plotting $\{\text{RCu}\}^{-1}$ vs $[\text{Cu}^{2+}]^{-1}$ the values of $[\text{RCu}]$ and *K_3* can be evaluated. Equation (19) is mathematically equivalent to Eqn. (17).

Figure 5 illustrates such a plot for the Cu(II)-binding to chitin at pH 8.2. At high copper concentrations the data show deviations from the linear relationship. This may be due to...
Adsorption of Cu$^{2+}$ on chitin particles in the ocean

Fig. 5. Langmuir isotherm for the adsorption of Cu(II) by chitin in seawater, pH = 8.2 and 25°C.

Fig. 6. The rate of adsorption of Cu(II) (1 μM) to chitin in seawater (pH = 8.2) in the absence and in the presence of Cd(II) and Pb(II) (0.5 μM).

oxide surfaces (Balistrieri and Murray, 1982), phytoplankton (Fisher, 1985), algae (Xue et al., 1988; Goncalves and Lopes da Conceição, 1989), and bacteria (Gordon and Millero, 1987).

Effect of pH, temperature, and salinity in the adsorption of Cu$^{2+}$ to chitin

Adsorption of Cu(II) (and other metal ions) at the solid-chitin surface-water interface is strongly pH-dependent (Fig. 7), because the properties of both the chitin surface (charge and potential) and the solution composition (metal ion speciation) change with pH.

Using Eqn. (13), we obtain

$$\log \frac{\{RCu\}}{[Cu^{2+}]} = Z + n \text{pH} \quad (20)$$

where $Z = \log *K_h + n \log \{RH_n\}$, and, if Z is considered to be constant,

$$\log \frac{[Cu^{2+}]_{\text{ads}}}{[Cu^{2+}]_{\text{sol}}} = Z + n \text{pH} \quad (21)$$

Uptake kinetics of Cu(II)

Figure 6 shows a plot of concentration changes as a function of reaction time for the adsorption of Cu$^{2+}$. The amount of Cu$^{2+}$ adsorbed increases rapidly, and, after 15 min, 85% of the initial copper added (5.0 × 10$^{-7}$ M) is adsorbed and equilibrium is achieved. The half-time calculated, assuming pseudo-first-order kinetics, is $t_{1/2} = 8 \pm 2$ min. Similar behavior has been found for the adsorption of Cu$^{2+}$ by metal oxide surfaces (Balistrieri and Murray, 1982), phytoplankton (Fisher, 1985), algae (Xue et al., 1988; Goncalves and Lopes da Conceição, 1989), and bacteria (Gordon and Millero, 1987).

Effect of pH, temperature, and salinity in the adsorption of Cu$^{2+}$ to chitin

Adsorption of Cu(II) (and other metal ions) at the solid-chitin surface-water interface is strongly pH-dependent (Fig. 7), because the properties of both the chitin surface (charge and potential) and the solution composition (metal ion speciation) change with pH.

Using Eqn. (13), we obtain

$$\log \frac{\{RCu\}}{[Cu^{2+}]} = Z + n \text{pH} \quad (20)$$

where $Z = \log *K_h + n \log \{RH_n\}$, and, if Z is considered to be constant,

$$\log \frac{[Cu^{2+}]_{\text{ads}}}{[Cu^{2+}]_{\text{sol}}} = Z + n \text{pH} \quad (21)$$

Table 3. Binding constant to the surface of chitin.

<table>
<thead>
<tr>
<th>Substance</th>
<th>K_h (mol g$^{-1}$)</th>
<th>K_h (mol mol$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitin</td>
<td>6.46 × 10$^{-6}$</td>
<td>6.95 ± 0.03</td>
<td>This work</td>
</tr>
<tr>
<td>Chitin*</td>
<td>3.10 × 10$^{-6}$</td>
<td>3.78 ± 0.02</td>
<td>This work</td>
</tr>
<tr>
<td>Algae</td>
<td>6.95 × 10$^{-5}$</td>
<td>7.3</td>
<td></td>
</tr>
</tbody>
</table>

*Same concentration of Cu$^{2+}$, Cd$^{2+}$ and Pb$^{2+}$ was added.
1. Xue et al. (1988).
According to Fig. 7, when a concentration of 1 \mu M of Cu^{2+} is added to a chitin suspension in seawater, most of the copper will be adsorbed to the chitin surface groups. At a pH lower than 5.5, corresponding with the pH_{ZPC} for the chitin surface groups, most of the copper remains in solution. Similar behavior of the effect of pH on the adsorption of Cu^{2+} has been shown for oxide and biological surfaces ranging from phytoplankton to algae and bacteria (Balistrieri and Murray, 1982; Gordon and Millero, 1987; Xue et al., 1988).

Between pH 5.6 and 6.5 (Fig. 7), if \(Z \) is constant, the slope should be 2. In our case, the slope found is 1.45 ± 0.08, a lower value than expected. The cause of the difference may be that the values of \(Z \) are not constant even if the amount of Cu adsorbed is very small. The different sites on the chitin surface may change with pH. The low value may also due to the adsorption of anions, directly or indirectly as counterions. The formation of multinuclear hydroxy Cu(II) species may also occur (Xue et al., 1988; Laitinen and Zhou, 1988; Farley et al., 1985). Further studies are needed to elucidate the solution speciation effects on the adsorption of Cu^{2+} on chitin.

Temperature plays an important role in adsorption. There is no general rule for predicting the influence of the temperature on metal ion adsorption, and therefore one should expect variations in both directions. The adsorption of Cu^{2+} decreases at higher temperature. Similar behavior is found for the adsorption of gases on solids and phosphate on goethite (Machinesky et al., 1989).

The specific adsorption energy \(E \) was calculated for the adsorption of copper on chitin using the equation

\[
K_p = A \exp(-E/RT),
\]

where \(A \) is the frequency factor, which is independent of temperature, and \(K_p \) is the partition coefficient of Cu^{2+} on chitin. The values of \(\log K_p \) versus \(1/T \) (K) are shown in Fig. 8. The linear fit gives a value of \(E = -3.8 \pm 0.9 \) kcal mol^{-1}. This negative specific adsorption energy of Cu^{2+} may be interpreted as the heat of hydration of Cu(II) being lower than its heat of adsorption.

FIG. 8. Effect of temperature (K) on the adsorption of Cu(II) (1 \mu M) on chitin in seawater (S = 35 and pH = 8.1).

The effect of salinity on metal ion adsorption on chitin has received little attention. Most of the studies on chitin have been carried out in natural and waste water. The studies in seawater (Muzzarelli, 1973, 1977; Muzzarelli and Tanfani, 1982) were made with chitosan due to its higher ability to adsorb metal ions. The salinity can influence adsorption by affecting the activities of the metal ions in solution, as well as affecting surface charge and double-layer capacitance of the hydrated particles. Increasing ionic strength usually increases the aggregation of suspended particles. Increased aggregation, in turn, is likely to increase the time-dependent partition of sorption, reflecting the necessity of solute diffusion into interaggregate pores. Concomitantly, both the exterior surface and the rapidly reversible component of sorption decrease. Thus, depending upon the reaction time used, sorption could appear to decrease. For this reason, overnight stabilization of the samples at four different salinities obtained for dilution of the seawater were carried out. The corresponding variation of the partition coefficient of Cu^{2+} to chitin at the different salinities is shown in Fig. 9. A linear relation between \(\log K_p \) and \(S^{1/2} \) gives a positive slope of 0.59, showing an increase in the amount adsorbed when the salinity increases. This may result in chitin being more important in transporting metals in seawater, where it is more abundant, than in freshwaters.

FIG. 9. Effect of salinity on the adsorption of Cu(II) (1 \mu M) on chitin at 25°C and pH = 8.1.

Competition with other metals

In the previous experiments only Cu^{2+} was added to the adsorbent to study the adsorption behavior. In natural aqueous systems, several metallic ions will be present and a selective uptake of these metals may be expected. In order to investigate its selectivity, a mixture containing Cu^{2+}, Pb^{2+}, and Cd^{2+} was equilibrated with chitin.

Figure 6 shows the effect of Pb^{2+} and Cd^{2+} on the adsorption of Cu^{2+} as a function of reaction time. Again, a rapid increase on the amount of Cu(II) adsorbed is observed. The half-time calculated, assuming a pseudo-first-order kinetic, is 13 ± 2 min. Only a small increase in the half-time is observed, indicating that in the beginning the highest affinity surface ligands of chitin surface are rapidly occupied by the
stronger adsorbed Cu$^{2+}$, and then a slight competition for these sites and for the lower affinity ones exist. After this increase, an equilibrium with the chitin surface is obtained, and almost the same amount (85%) of Cu$^{2+}$ added is adsorbed by the chitin surface groups.

Figure 4 shows the Cu$^{2+}$ Langmuir isotherm (Eqn. 13) when the same concentrations of Cu$^{2+}$, Cd$^{2+}$, and Pb$^{2+}$ are added to chitin. It can be observed that as a consequence of the competition for the highest affinity surface ligands, when a higher amount of each metal is added, a lower concentration of Cu$^{2+}$ is adsorbed. Using the transformed Langmuir equation (Eqn. 14) as it is shown in Fig. 5, a value of 5.9 × 10$^{-6}$ mol g$^{-1}$ for the complexing capacity (R) and a value of 9.0 ± 0.1 for log K_B are obtained (Table 3). A quantity of 10$^{-6}$ KJ mol$^{-1}$ less Cu$^{2+}$ is adsorbed in this case, being these sites and for the lower affinity ones existo After this, and almost the same amount (85%) of Cu$^{2+}$ added is adsorbed when the same concentrations of Cu$^{2+}$, Cd$^{2+}$, and Pb$^{2+}$ are adsorbed on chitin in seawater.

Conclusions

The adsorption of Cu$^{2+}$ on chitin has been measured as a function of pH, temperature, and salinity. Its acid-base properties have been characterized in 0.7 M NaCl in terms of a two-protonic acid-base system. The adsorption of Cu$^{2+}$ on chitin can be correlated with a surface complex formation equilibria or its mathematically equivalent Langmuir isotherm. Variations in factors such as pH, temperature, and salinity have additional (positive or negative) effects on the mobilization of copper. The presence of other transition metals does not affect the adsorption of Cu$^{2+}$ on chitin due to its higher affinity for the chitin surface groups.

Acknowledgments—The authors wish to acknowledge the support of the Office of Naval Research (N-0014-87-G0116) and the oceanographic section of the National Science Foundation (OCE-88-00411) for this study. M. González-Davila wishes to thank the government of the Canary Islands who supported his stay in the United States. The authors also would like to thank Dr. John Morse (Texas A&M University) for making the surface area measurements and acknowledge the helpful comments of Dr. David Hawke (University of Miami).

Editorial handling: S. E. Calvert

REFERENCES

